Derleme
BibTex RIS Kaynak Göster

Magnetoencephalography as a Clinical Tool: A Brief Review of Current Studies

Yıl 2019, Cilt: 1 Sayı: 2, 70 - 78, 16.12.2019

Öz

Magnetoencephalography (MEG) is becoming a very popular functional neuroimaging tool in clinical practice. It is currently used with other imaging methods to aid diagnosis and pre-surgical mapping of many conditions ranging from epilepsy to depression. This paper reviews the most current studies that have utilized MEG for investigating some of these conditions and discusses the benefits of using this method in medical practice.

Kaynakça

  • 1. Ahlfors, S., Han, J., Belliveau, J. and Hämäläinen, M. (2010). Sensitivity of MEG and EEG to Source Orientation. Brain Topography, 23(3), pp.227-232. https://doi.org/10.1007/s10548-010-0154-x
  • 2. An, K., Ikeda, T., Yoshimura, Y., Hasegawa, C., Saito, D., Kumazaki, H., Hirosawa, T., Minabe, Y. and Kikuchi, M. (2018). Altered Gamma Oscillations during Motor Control in Children with Autism Spectrum Disorder. The Journal of Neuroscience, 38(36), pp.7878-7886. https://doi.org/10.1523/JNEUROSCI.1229-18.2018
  • 3. Babajani-Feremi, A., Holder, C., Narayana, S., Fulton, S., Choudhri, A., Boop, F. and Wheless, J. (2018). Predicting postoperative language outcome using presurgical fMRI, MEG, TMS, and high gamma ECoG. Clinical Neurophysiology, 129(3), pp.560-571. https://doi.org/10.1016/j.clinph.2017.12.031
  • 4. Bardouille, T., Power, L., Lalancette, M., Bishop, R., Beyea, S., Taylor, M. and Dunkley, B. (2018). Variability and bias between magnetoencephalography systems in non-invasive localization of the primary somatosensory cortex. Clinical Neurology and Neurosurgery, 171, pp.63-69.https://doi.org/10.1016/j.clineuro.2018.05.018
  • 5. Boon, L., Geraedts, V., Hillebrand, A., Tannemaat, M., Contarino, M., Stam, C. and Berendse, H. (2019). A systematic review of MEG-based studies in Parkinson's disease: The motor system and beyond. Human Brain Mapping. https://doi.org/10.1002/hbm.24562
  • 6. Braeutigam, S. (2013). Magnetoencephalography: Fundamentals and Established and Emerging Clinical Applications in Radiology. ISRN Radiology, 2013, pp.1-18. https://doi.org/10.5402/2013/529463
  • 7. Chattun, M., Zhang, S., Chen, Y., Wang, Q., Amdanee, N., Tian, S., Lu, Q. and Yao, Z. (2018). Caudothalamic dysfunction in drug-free suicidally depressed patients: an MEG study. European Archives of Psychiatry and Clinical Neuroscience. https://doi.org/10.1007/s00406-018-0968-1
  • 8. Cohen, D., Cuffin, B., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G., Ives, J., Kennedy, J. and Schomer, D. (1990). MEG versus EEG localization test using implanted sources in the human brain. Annals of Neurology, 28(6), pp.811-817. https://doi.org/10.1002/ana.410280613
  • 9. Colon, A., Osch, M., Buijs, M., Grond, J., Hillebrand, A., Schijns, O., Wagner, G., Ossenblok, P., Hofman, P., Buchem, M. and Boon, P. (2018). MEG-guided analysis of 7T-MRI in patients with epilepsy. Seizure, 60, pp.29-38. https://doi.org/10.1016/j.seizure.2018.05.019
  • 10. Dauwan, M., Hoff, J., Vriens, E., Hillebrand, A., Stam, C. and Sommer, I. (2019). Aberrant resting-state oscillatory brain activity in Parkinson's disease patients with visual hallucinations: An MEG source-space study. NeuroImage: Clinical, 22, p.101752. https://doi.org/10.1016/j.nicl.2019.101752
  • 11. de Jongh, A., de Munck, J., Goncalves, S. and Ossenblok, P. (2005). Differences in MEG/EEG Epileptic Spike Yields Explained by Regional Differences in Signal-to-Noise Ratios. Journal of Clinical Neurophysiology, 22(2), pp.153-158. https://doi.org/10.1097/01.WNP.0000158947.68733.51
  • 12. Edgar, J., Fisk, C., Chen, Y., Stone-Howell, B., Liu, S., Hunter, M., Huang, M., Bustillo, J., Cañive, J. and Miller, G. (2018). Identifying auditory cortex encoding abnormalities in schizophrenia: The utility of low-frequency versus 40 Hz steady-state measures. Psychophysiology, 55(8), p.e13074. https://doi.org/10.1111/psyp.13074
  • 13. El Tahry, R., Wang, Z., Thandar, A., Podkorytova, I., Krishnan, B., Tousseyn, S., Guiyun, W., Burgess, R. and Alexopoulos, A. (2018). Magnetoencephalography and ictal SPECT in patients with failed epilepsy surgery. Clinical Neurophysiology, 129(8), pp.1651-1657. https://doi.org/10.1016/j.clinph.2018.05.010
  • 14. Fraga de Abreu, V., Peck, K., Petrovich-Brennan, N., Woo, K. and Holodny, A. (2016). Brain Tumors: The Influence of Tumor Type and Routine MR Imaging Characteristics at BOLD Functional MR Imaging in the Primary Motor Gyrus. Radiology, 281(3), pp.876-883. https://doi.org/10.1148/radiol.2016151951
  • 15. Gadad, V., Sinha, S., Mariyappa, N., Velmurugan, J., Chaitanya, G., Saini, J., Thennarasu, K. and Satishchandra, P. (2018). Source analysis of epileptiform discharges in absence epilepsy using Magnetoencephalography (MEG). Epilepsy Research, 140, pp.46-52. https://doi.org/10.1016/j.eplepsyres.2017.12.003
  • 16. Grynszpan, F. and Geselowitz, D. (1973). Model Studies of the Magnetocardiogram. Biophysical Journal, 13(9), pp.911-925. https://doi.org/10.1016/S0006-3495(73)86034-5
  • 17. Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J. and Lounasmaa, O. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), pp.413-497. https://doi.org/10.1103/revmodphys.65.413
  • 18. Hansen, P., Kringelbach, M. and Salmelin, R. (2010). MEG. New York: Oxford University Press. https://global.oup.com/academic/product/meg-9780195307238?cc=us&lang=en&
  • 19. Harmsen, I., Rowland, N., Wennberg, R. and Lozano, A. (2018). Characterizing the effects of deep brain stimulation with magnetoencephalography: A review. Brain Stimulation, 11(3), pp.481-491. https://doi.org/10.1016/j.brs.2017.12.016
  • 20. Hata, M., Kurimoto, R., Kazui, H., Ishii, R., Canuet, L., Aoki, Y., Ikeda, S., Azuma, S., Suehiro, T., Sato, S., Suzuki, Y., Kanemoto, H., Yoshiyama, K., Iwase, M. and Ikeda, M. (2018). Alpha event-related synchronization after eye closing differs in Alzheimer's disease and dementia with Lewy bodies: a magnetoencephalography study. Psychogeriatrics, 18(3), pp.202-208. https://doi.org/10.1111/psyg.12313
  • 21. Heers, M., Rampp, S., Kaltenhäuser, M., Pauli, E., Rauch, C., Dölken, M. and Stefan, H. (2010). Detection of epileptic spikes by magnetoencephalography and electroencephalography after sleep deprivation. Seizure, 19(7), pp.397-403. https://doi.org/10.1016/j.seizure.2010.06.004
  • 22. Hillebrand, A., Gaetz, W., Furlong, P., Gouw, A. and Stam, C. (2018). Practical guidelines for clinical magnetoencephalography – Another step towards best practice. Clinical Neurophysiology, 129(8), pp.1709-1711. https://doi.org/10.1016/j.clinph.2018.05.007
  • 23. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neu-rosurgery. AJNR Am J Neuroradiol 21, p.1415–1422. https://www.ajnr.org/content/21/8/1415/tab-article-info
  • 24. Jiang H, Popov T, Jylänki P, Bi K, Yao Z, Lu Q, et al. Predictability of depression severity based on posterior alpha oscillations.Neurophysiol Clin (2016) 127(4):2108–14. https://doi.org/10.1016/j.clinph.2015.12.018
  • 25. Josef Golubic, S., Aine, C., Stephen, J., Adair, J., Knoefel, J. and Supek, S. (2017). MEG biomarker of Alzheimer's disease: Absence of a prefrontal generator during auditory sensory gating. Human Brain Mapping, 38(10), pp.5180-5194. https://doi.org/10.1002/hbm.23724
  • 26. Lee, H., Shin, J., Webber, W., Crone, N., Gingis, L. and Lesser, R. (2009). Reorganisation of cortical motor and language distribution in human brain. Journal of Neurology, Neurosurgery & Psychiatry, 80(3), pp.285-290. https://doi.org/10.1136/jnnp.2008.156067
  • 27. Li, Y., Wu, T. and Jiang, T. (2019). Power Spectral Analysis in Lateralized Temporal Lobe Epilepsy: An MEG Study. Journal of Physics: Conference Series, 1168, p.032121. https://doi.org/10.1088/1742-6596/1168/3/032121
  • 28. Li Hegner, Y., Marquetand, J., Elshahabi, A., Klamer, S., Lerche, H., Braun, C. and Focke, N. (2018). Increased Functional MEG Connectivity as a Hallmark of MRI-Negative Focal and Generalized Epilepsy. Brain Topography, 31(5), pp.863-874. https://doi.org/10.1007/s10548-018-0649-4
  • 29. Liu AK, Dale AM, Belliveau JW. Monte Carlo simulation studies of EEG and MEG localization accuracy. Human Brain Mapping. 2002;16:47–62. https://doi.org/10.1002/hbm.10024
  • 30. Meng, L. (2019). A Magnetoencephalography Study of Pediatric Interictal Neuromagnetic Activity Changes and Brain Network Alterations Caused by Epilepsy in the High Frequency (80–1000 Hz). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(3), pp.389-399. https://doi.org/10.1109/TNSRE.2019.2898683
  • 31. Muhlhofer, W., Tan, Y., Mueller, S. and Knowlton, R. (2017). MRI-negative temporal lobe epilepsy-What do we know?. Epilepsia, 58(5), pp.727-742. https://doi.org/10.1111/epi.13699
  • 32. Neil Cuffin, B. and Cohen, D. (1979). Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 47(2), pp.132-146. https://doi.org/10.1016/0013-4694(79)90215-3 33. Oswal, A., Jha, A., Neal, S., Reid, A., Bradbury, D., Aston, P., Limousin, P., Foltynie, T., Zrinzo, L., Brown, P. and Litvak, V. (2016). Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. Journal of Neuroscience Methods, 261, pp.29-46. https://doi.org/10.1016/j.jneumeth.2015.11.029 34. Papanicolaou, A., Rezaie, R., Narayana, S., Choudhri, A., Abbas-Babajani-Feremi, Boop, F. and Wheless, J. (2018). On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery. Epilepsy Research, 142, pp.153-155. https://doi.org/10.1016/j.eplepsyres.2017.07.002
  • 35. Perry, G., Hamandi, K., Brindley, L., Muthukumaraswamy, S. and Singh, K. (2013). The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. NeuroImage, 68, pp.83-92. https://doi.org/10.1016/j.neuroimage.2012.11.043
  • 36. Popov, T., Jensen, O. and Schoffelen, J. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. NeuroImage, 178, pp.277-286. https://doi.org/10.1016/j.neuroimage.2018.05.054
  • 37. Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain 2001;124 (9):1683–700. https://doi.org/10.1093/brain/124.9.1683
  • 38. Safar, K., Wong, S., Leung, R., Dunkley, B. and Taylor, M. (2018). Increased Functional Connectivity During Emotional Face Processing in Children With Autism Spectrum Disorder. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00408
  • 39. Sharon, D., Hämäläinen, M., Tootell, R., Halgren, E. and Belliveau, J. (2007). The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex. NeuroImage, 36(4), pp.1225-1235. https://doi.org/10.1016/j.neuroimage.2007.03.066
  • 40. Stufflebeam, S., Tanaka, N. and Ahlfors, S. (2009). Clinical applications of magnetoencephalography. Human Brain Mapping, 30(6), pp.1813-1823. https://doi.org/10.1002/hbm.20792
  • 41. Shtyrov, Y., Smith, M., Horner, A., Henson, R., Nathan, P., Bullmore, E. and Pulvermüller, F. (2012). Attention to language: Novel MEG paradigm for registering involuntary language processing in the brain. Neuropsychologia, 50(11), pp.2605-2616. https://doi.org/10.1016/j.neuropsychologia.2012.07.012
  • 42. Tamilia, E., AlHilani, M., Tanaka, N., Tsuboyama, M., Peters, J., Grant, P., Madsen, J., Stufflebeam., S., Pearl, P. and Papadelis, C. (2019). Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy. Clinical Neurophysiology, 130(4), pp.491-504. https://doi.org/10.1016/j.clinph.2019.01.009
  • 43. Uhlhaas, P., Liddle, P., Linden, D., Nobre, A., Singh, K. and Gross, J. (2017). Magnetoencephalography as a Tool in Psychiatric Research: Current Status and Perspective. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(3), pp.235-244. https://doi.org/10.1016/j.bpsc.2017.01.005
  • 44. Van Dijk, H., Nieuwenhuis, I. and Jensen, O. (2010). Left temporal alpha band activity increases during working memory retention of pitches. European Journal of Neuroscience, p.no-no. https://doi.org/10.1111/j.1460-9568.2010.07227.x
  • 45. van Klink, Nicole et al. "Simultaneous MEG And EEG To Detect Ripples In People With Focal Epilepsy".Clinical Neurophysiology, 2019. Elsevier BV, https://doi.org/10.1016/j.clinph.2019.01.027
  • 46. Vaughan, H.G. The relationship of brain activity to scalp recording of event-related potentials. In: E. Donchin and D.B. Lindsley (Eds.), Average Evoked Potentials. NASA, Washington, D.C.~ 1969: 45–94. https://doi.org/10.1037/13016-002
  • 47. Wang, L., Hagoort, P. and Jensen, O. (2018). Gamma Oscillatory Activity Related to Language Prediction. Journal of Cognitive Neuroscience, 30(8), pp.1075-1085. https://doi.org/10.1162/jocn_a_01275
  • 48. Wendel, K., Väisänen, O., Malmivuo, J., Gencer, N., Vanrumste, B., Durka, P., Magjarević, R., Supek, S., Pascu, M., Fontenelle, H. and Grave de Peralta Menendez, R. (2009). EEG/MEG Source Imaging: Methods, Challenges, and Open Issues. Computational Intelligence and Neuroscience, 2009, pp.1-12. https://doi.org/10.1155/2009/656092
  • 49. Williamson, S., Lu, Z., Karron, D. and Kaufman, L. (1991). Advantages and limitations of magnetic source imaging. Brain Topography, 4(2), pp.169-180. https://doi.org/10.1007/BF01132773
  • 50. Wu, H., Yuji, I. and Ban, H. (2018). Reverse Radial Bias: Temporal Orientation Bias Compensation in Early Visual Areas Revealed by MEG. Journal of Vision, 18(10), p.716. https://doi.org/10.1167/18.10.716
  • 51. Youssofzadeh, V., Agler, W., Tenney, J. and Kadis, D. (2018). Whole-brain MEG connectivity-based analyses reveals critical hubs in childhood absence epilepsy. Epilepsy Research, 145, pp.102-109. https://doi.org/10.1016/j.eplepsyres.2018.06.001
  • 52. Yu, M., Engels, M., Hillebrand, A., van Straaten, E., Gouw, A., Teunissen, C., van der Flier, W., Scheltens, P. and Stam, C. (2017). Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: an MEG-based multiplex network study. Brain, 140(5), pp.1466-1485. https://doi.org/10.1093/brain/awx050
  • 53. Yu, T., Ni, D., Zhang, X., Wang, X., Qiao, L., Zhou, X., Wang, Y., Li, Y. and Zhang, G. (2018). The role of magnetoencephalography in the presurgical evaluation of patients with MRI-negative operculo-insular epilepsy. Seizure, 61, pp.104-110. https://doi.org/10.1016/j.seizure.2018.07.005
  • 54. Zimmermann, M., Rössler, K., Kaltenhäuser, M., Grummich, P., Brandner, N., Buchfelder, M., Dörfler, A., Kölble, K. and Stadlbauer, A. (2019). Comparative fMRI and MEG localization of cortical sensorimotor function: Bimodal mapping supports motor area reorganization in glioma patients. PLOS ONE, 14(3), p.e0213371. https://doi.org/10.1371/journal.pone.0213371

Magnetoensefalografinin Klinik Araç Olarak Kullanımı: Güncel Araştırmaların Kısa İncelemesi

Yıl 2019, Cilt: 1 Sayı: 2, 70 - 78, 16.12.2019

Öz

Magnetoensefalografi(MEG) gün geçtikçe klinik alanda kullanımı popüler olan bir nöro görüntüleme aracı olmaktadır. Şu anda bu araçtan diğer nöro görüntüleme yöntemleriyle birlikte tanı ve cerrahi operasyonlar öncesi haritalama amacıyla epilepsiden depresyona kadar birçok alanda yararlanılmaktadır. Bu kağıt bahsedilen medikal problemleri MEG aracılığıyla inceleyen ve MEG’in kullanımının medikal alanda yararlarını tartışan son araştırmaları incelemektedir.

Kaynakça

  • 1. Ahlfors, S., Han, J., Belliveau, J. and Hämäläinen, M. (2010). Sensitivity of MEG and EEG to Source Orientation. Brain Topography, 23(3), pp.227-232. https://doi.org/10.1007/s10548-010-0154-x
  • 2. An, K., Ikeda, T., Yoshimura, Y., Hasegawa, C., Saito, D., Kumazaki, H., Hirosawa, T., Minabe, Y. and Kikuchi, M. (2018). Altered Gamma Oscillations during Motor Control in Children with Autism Spectrum Disorder. The Journal of Neuroscience, 38(36), pp.7878-7886. https://doi.org/10.1523/JNEUROSCI.1229-18.2018
  • 3. Babajani-Feremi, A., Holder, C., Narayana, S., Fulton, S., Choudhri, A., Boop, F. and Wheless, J. (2018). Predicting postoperative language outcome using presurgical fMRI, MEG, TMS, and high gamma ECoG. Clinical Neurophysiology, 129(3), pp.560-571. https://doi.org/10.1016/j.clinph.2017.12.031
  • 4. Bardouille, T., Power, L., Lalancette, M., Bishop, R., Beyea, S., Taylor, M. and Dunkley, B. (2018). Variability and bias between magnetoencephalography systems in non-invasive localization of the primary somatosensory cortex. Clinical Neurology and Neurosurgery, 171, pp.63-69.https://doi.org/10.1016/j.clineuro.2018.05.018
  • 5. Boon, L., Geraedts, V., Hillebrand, A., Tannemaat, M., Contarino, M., Stam, C. and Berendse, H. (2019). A systematic review of MEG-based studies in Parkinson's disease: The motor system and beyond. Human Brain Mapping. https://doi.org/10.1002/hbm.24562
  • 6. Braeutigam, S. (2013). Magnetoencephalography: Fundamentals and Established and Emerging Clinical Applications in Radiology. ISRN Radiology, 2013, pp.1-18. https://doi.org/10.5402/2013/529463
  • 7. Chattun, M., Zhang, S., Chen, Y., Wang, Q., Amdanee, N., Tian, S., Lu, Q. and Yao, Z. (2018). Caudothalamic dysfunction in drug-free suicidally depressed patients: an MEG study. European Archives of Psychiatry and Clinical Neuroscience. https://doi.org/10.1007/s00406-018-0968-1
  • 8. Cohen, D., Cuffin, B., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G., Ives, J., Kennedy, J. and Schomer, D. (1990). MEG versus EEG localization test using implanted sources in the human brain. Annals of Neurology, 28(6), pp.811-817. https://doi.org/10.1002/ana.410280613
  • 9. Colon, A., Osch, M., Buijs, M., Grond, J., Hillebrand, A., Schijns, O., Wagner, G., Ossenblok, P., Hofman, P., Buchem, M. and Boon, P. (2018). MEG-guided analysis of 7T-MRI in patients with epilepsy. Seizure, 60, pp.29-38. https://doi.org/10.1016/j.seizure.2018.05.019
  • 10. Dauwan, M., Hoff, J., Vriens, E., Hillebrand, A., Stam, C. and Sommer, I. (2019). Aberrant resting-state oscillatory brain activity in Parkinson's disease patients with visual hallucinations: An MEG source-space study. NeuroImage: Clinical, 22, p.101752. https://doi.org/10.1016/j.nicl.2019.101752
  • 11. de Jongh, A., de Munck, J., Goncalves, S. and Ossenblok, P. (2005). Differences in MEG/EEG Epileptic Spike Yields Explained by Regional Differences in Signal-to-Noise Ratios. Journal of Clinical Neurophysiology, 22(2), pp.153-158. https://doi.org/10.1097/01.WNP.0000158947.68733.51
  • 12. Edgar, J., Fisk, C., Chen, Y., Stone-Howell, B., Liu, S., Hunter, M., Huang, M., Bustillo, J., Cañive, J. and Miller, G. (2018). Identifying auditory cortex encoding abnormalities in schizophrenia: The utility of low-frequency versus 40 Hz steady-state measures. Psychophysiology, 55(8), p.e13074. https://doi.org/10.1111/psyp.13074
  • 13. El Tahry, R., Wang, Z., Thandar, A., Podkorytova, I., Krishnan, B., Tousseyn, S., Guiyun, W., Burgess, R. and Alexopoulos, A. (2018). Magnetoencephalography and ictal SPECT in patients with failed epilepsy surgery. Clinical Neurophysiology, 129(8), pp.1651-1657. https://doi.org/10.1016/j.clinph.2018.05.010
  • 14. Fraga de Abreu, V., Peck, K., Petrovich-Brennan, N., Woo, K. and Holodny, A. (2016). Brain Tumors: The Influence of Tumor Type and Routine MR Imaging Characteristics at BOLD Functional MR Imaging in the Primary Motor Gyrus. Radiology, 281(3), pp.876-883. https://doi.org/10.1148/radiol.2016151951
  • 15. Gadad, V., Sinha, S., Mariyappa, N., Velmurugan, J., Chaitanya, G., Saini, J., Thennarasu, K. and Satishchandra, P. (2018). Source analysis of epileptiform discharges in absence epilepsy using Magnetoencephalography (MEG). Epilepsy Research, 140, pp.46-52. https://doi.org/10.1016/j.eplepsyres.2017.12.003
  • 16. Grynszpan, F. and Geselowitz, D. (1973). Model Studies of the Magnetocardiogram. Biophysical Journal, 13(9), pp.911-925. https://doi.org/10.1016/S0006-3495(73)86034-5
  • 17. Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J. and Lounasmaa, O. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2), pp.413-497. https://doi.org/10.1103/revmodphys.65.413
  • 18. Hansen, P., Kringelbach, M. and Salmelin, R. (2010). MEG. New York: Oxford University Press. https://global.oup.com/academic/product/meg-9780195307238?cc=us&lang=en&
  • 19. Harmsen, I., Rowland, N., Wennberg, R. and Lozano, A. (2018). Characterizing the effects of deep brain stimulation with magnetoencephalography: A review. Brain Stimulation, 11(3), pp.481-491. https://doi.org/10.1016/j.brs.2017.12.016
  • 20. Hata, M., Kurimoto, R., Kazui, H., Ishii, R., Canuet, L., Aoki, Y., Ikeda, S., Azuma, S., Suehiro, T., Sato, S., Suzuki, Y., Kanemoto, H., Yoshiyama, K., Iwase, M. and Ikeda, M. (2018). Alpha event-related synchronization after eye closing differs in Alzheimer's disease and dementia with Lewy bodies: a magnetoencephalography study. Psychogeriatrics, 18(3), pp.202-208. https://doi.org/10.1111/psyg.12313
  • 21. Heers, M., Rampp, S., Kaltenhäuser, M., Pauli, E., Rauch, C., Dölken, M. and Stefan, H. (2010). Detection of epileptic spikes by magnetoencephalography and electroencephalography after sleep deprivation. Seizure, 19(7), pp.397-403. https://doi.org/10.1016/j.seizure.2010.06.004
  • 22. Hillebrand, A., Gaetz, W., Furlong, P., Gouw, A. and Stam, C. (2018). Practical guidelines for clinical magnetoencephalography – Another step towards best practice. Clinical Neurophysiology, 129(8), pp.1709-1711. https://doi.org/10.1016/j.clinph.2018.05.007
  • 23. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neu-rosurgery. AJNR Am J Neuroradiol 21, p.1415–1422. https://www.ajnr.org/content/21/8/1415/tab-article-info
  • 24. Jiang H, Popov T, Jylänki P, Bi K, Yao Z, Lu Q, et al. Predictability of depression severity based on posterior alpha oscillations.Neurophysiol Clin (2016) 127(4):2108–14. https://doi.org/10.1016/j.clinph.2015.12.018
  • 25. Josef Golubic, S., Aine, C., Stephen, J., Adair, J., Knoefel, J. and Supek, S. (2017). MEG biomarker of Alzheimer's disease: Absence of a prefrontal generator during auditory sensory gating. Human Brain Mapping, 38(10), pp.5180-5194. https://doi.org/10.1002/hbm.23724
  • 26. Lee, H., Shin, J., Webber, W., Crone, N., Gingis, L. and Lesser, R. (2009). Reorganisation of cortical motor and language distribution in human brain. Journal of Neurology, Neurosurgery & Psychiatry, 80(3), pp.285-290. https://doi.org/10.1136/jnnp.2008.156067
  • 27. Li, Y., Wu, T. and Jiang, T. (2019). Power Spectral Analysis in Lateralized Temporal Lobe Epilepsy: An MEG Study. Journal of Physics: Conference Series, 1168, p.032121. https://doi.org/10.1088/1742-6596/1168/3/032121
  • 28. Li Hegner, Y., Marquetand, J., Elshahabi, A., Klamer, S., Lerche, H., Braun, C. and Focke, N. (2018). Increased Functional MEG Connectivity as a Hallmark of MRI-Negative Focal and Generalized Epilepsy. Brain Topography, 31(5), pp.863-874. https://doi.org/10.1007/s10548-018-0649-4
  • 29. Liu AK, Dale AM, Belliveau JW. Monte Carlo simulation studies of EEG and MEG localization accuracy. Human Brain Mapping. 2002;16:47–62. https://doi.org/10.1002/hbm.10024
  • 30. Meng, L. (2019). A Magnetoencephalography Study of Pediatric Interictal Neuromagnetic Activity Changes and Brain Network Alterations Caused by Epilepsy in the High Frequency (80–1000 Hz). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(3), pp.389-399. https://doi.org/10.1109/TNSRE.2019.2898683
  • 31. Muhlhofer, W., Tan, Y., Mueller, S. and Knowlton, R. (2017). MRI-negative temporal lobe epilepsy-What do we know?. Epilepsia, 58(5), pp.727-742. https://doi.org/10.1111/epi.13699
  • 32. Neil Cuffin, B. and Cohen, D. (1979). Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalography and Clinical Neurophysiology, 47(2), pp.132-146. https://doi.org/10.1016/0013-4694(79)90215-3 33. Oswal, A., Jha, A., Neal, S., Reid, A., Bradbury, D., Aston, P., Limousin, P., Foltynie, T., Zrinzo, L., Brown, P. and Litvak, V. (2016). Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. Journal of Neuroscience Methods, 261, pp.29-46. https://doi.org/10.1016/j.jneumeth.2015.11.029 34. Papanicolaou, A., Rezaie, R., Narayana, S., Choudhri, A., Abbas-Babajani-Feremi, Boop, F. and Wheless, J. (2018). On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery. Epilepsy Research, 142, pp.153-155. https://doi.org/10.1016/j.eplepsyres.2017.07.002
  • 35. Perry, G., Hamandi, K., Brindley, L., Muthukumaraswamy, S. and Singh, K. (2013). The properties of induced gamma oscillations in human visual cortex show individual variability in their dependence on stimulus size. NeuroImage, 68, pp.83-92. https://doi.org/10.1016/j.neuroimage.2012.11.043
  • 36. Popov, T., Jensen, O. and Schoffelen, J. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. NeuroImage, 178, pp.277-286. https://doi.org/10.1016/j.neuroimage.2018.05.054
  • 37. Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain 2001;124 (9):1683–700. https://doi.org/10.1093/brain/124.9.1683
  • 38. Safar, K., Wong, S., Leung, R., Dunkley, B. and Taylor, M. (2018). Increased Functional Connectivity During Emotional Face Processing in Children With Autism Spectrum Disorder. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00408
  • 39. Sharon, D., Hämäläinen, M., Tootell, R., Halgren, E. and Belliveau, J. (2007). The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex. NeuroImage, 36(4), pp.1225-1235. https://doi.org/10.1016/j.neuroimage.2007.03.066
  • 40. Stufflebeam, S., Tanaka, N. and Ahlfors, S. (2009). Clinical applications of magnetoencephalography. Human Brain Mapping, 30(6), pp.1813-1823. https://doi.org/10.1002/hbm.20792
  • 41. Shtyrov, Y., Smith, M., Horner, A., Henson, R., Nathan, P., Bullmore, E. and Pulvermüller, F. (2012). Attention to language: Novel MEG paradigm for registering involuntary language processing in the brain. Neuropsychologia, 50(11), pp.2605-2616. https://doi.org/10.1016/j.neuropsychologia.2012.07.012
  • 42. Tamilia, E., AlHilani, M., Tanaka, N., Tsuboyama, M., Peters, J., Grant, P., Madsen, J., Stufflebeam., S., Pearl, P. and Papadelis, C. (2019). Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy. Clinical Neurophysiology, 130(4), pp.491-504. https://doi.org/10.1016/j.clinph.2019.01.009
  • 43. Uhlhaas, P., Liddle, P., Linden, D., Nobre, A., Singh, K. and Gross, J. (2017). Magnetoencephalography as a Tool in Psychiatric Research: Current Status and Perspective. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(3), pp.235-244. https://doi.org/10.1016/j.bpsc.2017.01.005
  • 44. Van Dijk, H., Nieuwenhuis, I. and Jensen, O. (2010). Left temporal alpha band activity increases during working memory retention of pitches. European Journal of Neuroscience, p.no-no. https://doi.org/10.1111/j.1460-9568.2010.07227.x
  • 45. van Klink, Nicole et al. "Simultaneous MEG And EEG To Detect Ripples In People With Focal Epilepsy".Clinical Neurophysiology, 2019. Elsevier BV, https://doi.org/10.1016/j.clinph.2019.01.027
  • 46. Vaughan, H.G. The relationship of brain activity to scalp recording of event-related potentials. In: E. Donchin and D.B. Lindsley (Eds.), Average Evoked Potentials. NASA, Washington, D.C.~ 1969: 45–94. https://doi.org/10.1037/13016-002
  • 47. Wang, L., Hagoort, P. and Jensen, O. (2018). Gamma Oscillatory Activity Related to Language Prediction. Journal of Cognitive Neuroscience, 30(8), pp.1075-1085. https://doi.org/10.1162/jocn_a_01275
  • 48. Wendel, K., Väisänen, O., Malmivuo, J., Gencer, N., Vanrumste, B., Durka, P., Magjarević, R., Supek, S., Pascu, M., Fontenelle, H. and Grave de Peralta Menendez, R. (2009). EEG/MEG Source Imaging: Methods, Challenges, and Open Issues. Computational Intelligence and Neuroscience, 2009, pp.1-12. https://doi.org/10.1155/2009/656092
  • 49. Williamson, S., Lu, Z., Karron, D. and Kaufman, L. (1991). Advantages and limitations of magnetic source imaging. Brain Topography, 4(2), pp.169-180. https://doi.org/10.1007/BF01132773
  • 50. Wu, H., Yuji, I. and Ban, H. (2018). Reverse Radial Bias: Temporal Orientation Bias Compensation in Early Visual Areas Revealed by MEG. Journal of Vision, 18(10), p.716. https://doi.org/10.1167/18.10.716
  • 51. Youssofzadeh, V., Agler, W., Tenney, J. and Kadis, D. (2018). Whole-brain MEG connectivity-based analyses reveals critical hubs in childhood absence epilepsy. Epilepsy Research, 145, pp.102-109. https://doi.org/10.1016/j.eplepsyres.2018.06.001
  • 52. Yu, M., Engels, M., Hillebrand, A., van Straaten, E., Gouw, A., Teunissen, C., van der Flier, W., Scheltens, P. and Stam, C. (2017). Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: an MEG-based multiplex network study. Brain, 140(5), pp.1466-1485. https://doi.org/10.1093/brain/awx050
  • 53. Yu, T., Ni, D., Zhang, X., Wang, X., Qiao, L., Zhou, X., Wang, Y., Li, Y. and Zhang, G. (2018). The role of magnetoencephalography in the presurgical evaluation of patients with MRI-negative operculo-insular epilepsy. Seizure, 61, pp.104-110. https://doi.org/10.1016/j.seizure.2018.07.005
  • 54. Zimmermann, M., Rössler, K., Kaltenhäuser, M., Grummich, P., Brandner, N., Buchfelder, M., Dörfler, A., Kölble, K. and Stadlbauer, A. (2019). Comparative fMRI and MEG localization of cortical sensorimotor function: Bimodal mapping supports motor area reorganization in glioma patients. PLOS ONE, 14(3), p.e0213371. https://doi.org/10.1371/journal.pone.0213371
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cerrahi
Bölüm Derlemeler
Yazarlar

Hüseyin Özenç Taşkın Bu kişi benim 0000-0003-4338-7797

Yayımlanma Tarihi 16 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 2

Kaynak Göster

APA Taşkın, H. Ö. (2019). Magnetoencephalography as a Clinical Tool: A Brief Review of Current Studies. Journal of Medical Innovation and Technology, 1(2), 70-78.
AMA Taşkın HÖ. Magnetoencephalography as a Clinical Tool: A Brief Review of Current Studies. Journal of Medical Innovation and Technology. Aralık 2019;1(2):70-78.
Chicago Taşkın, Hüseyin Özenç. “Magnetoencephalography As a Clinical Tool: A Brief Review of Current Studies”. Journal of Medical Innovation and Technology 1, sy. 2 (Aralık 2019): 70-78.
EndNote Taşkın HÖ (01 Aralık 2019) Magnetoencephalography as a Clinical Tool: A Brief Review of Current Studies. Journal of Medical Innovation and Technology 1 2 70–78.
IEEE H. Ö. Taşkın, “Magnetoencephalography as a Clinical Tool: A Brief Review of Current Studies”, Journal of Medical Innovation and Technology, c. 1, sy. 2, ss. 70–78, 2019.
ISNAD Taşkın, Hüseyin Özenç. “Magnetoencephalography As a Clinical Tool: A Brief Review of Current Studies”. Journal of Medical Innovation and Technology 1/2 (Aralık 2019), 70-78.
JAMA Taşkın HÖ. Magnetoencephalography as a Clinical Tool: A Brief Review of Current Studies. Journal of Medical Innovation and Technology. 2019;1:70–78.
MLA Taşkın, Hüseyin Özenç. “Magnetoencephalography As a Clinical Tool: A Brief Review of Current Studies”. Journal of Medical Innovation and Technology, c. 1, sy. 2, 2019, ss. 70-78.
Vancouver Taşkın HÖ. Magnetoencephalography as a Clinical Tool: A Brief Review of Current Studies. Journal of Medical Innovation and Technology. 2019;1(2):70-8.