Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapay Kemik ve 3D Baskılı Kemik Segmentlerinin Mekanik Karşılaştırılması

Yıl 2020, Cilt: 2 Sayı: 2, 127 - 130, 31.12.2020

Öz

Kemik dokusu, özellikle uzun kemiklerin kortikal ve spongiyöz kısımlarının mekanik açıdan farklılıklar göstermesi nedeniyle anizotropik bir yapı olarak kabul edilir. Araştırmacılar, mekanik çalışmalar açısından bakıldığında kemikle ilgili hastalıklar ve kemik kırıklarıyla yakından ilgilenmekte ve bu da onları alternatif modeller aramaya yönlendirmektedir. Uzun yıllardır yapılan biyomekanik çalışmalarda özellikle kemik dokusuna yoğunluk açısından benzediği kabul edilen yapay kemikler (sawbone) yaygın olarak tercih edilmektedir. Öte yandan son yıllarda 3D yazıcı tabanlı teknolojilerden faydalanılarak üretilen yapay kemik modelleri kullanılarak gerçekleştirilen birçok biyomekanik çalışma da bulunmaktadır. Bu çalışmadaki amacımız da yapay kemik (sawbone) ve 3D yazıcı ile üretilmiş olan kemik kesitlerinin mekanik özelliklerine göre karşılaştırılmasıdır.
Bilgisayarlı Tomografi (CT) ile anatomik femurun boyutları incelenmiş ve alınan bu verilerle bir katı model oluşturulmuştur. Fused Deposit Manufacturing (FDM) tekniği ve PLA filament kullanılarak numuneler üretilmiştir. 3 boyutlu yazıcı kullanılarak iki grup kemik kesiti 1,2 mm ve 2,8 mm kortikal kalınlıklarında 10 mm yüksekliğinde üretilmiştir. Bu numuneler 10 mm yükseklikte kesilen sawbone ile kıyaslanmıştır. Biyomekanik kompresyon testi ile mekanik basma dayanımları 1000 N'de 2 mm / dk hızda üç grup için de gerçekleştirilmiştir.
Sonuç olarak, maksimum kuvvet ortalaması sawbone, 1,2 mm ve 2,8 mm kalınlıkta örnekler için sırasıyla 1006,3 N, 1009,5 N ve 1010,6 N iken maksimum deplasman ortalaması ise sırasıyla 0,203 mm, 0,183 mm ve 0,191 mm idi. Sonuç olarak, benzer kuvvet ve yer değiştirme oranları nedeniyle, 3D baskılı kemik modellerinin biyomekanik analiz için yapay kemiklere iyi bir alternatif olduğu görülmüştür.

Kaynakça

  • Bankoff ADP, “Biomechanical Characteristics of the Bone”, in Human Musculoskeletal Biomechanics, Edited by Tarun Goswami, First published August, 2011, ISBN 978-953-307-638-6, doi: 10.5772/1547.
  • Morgan EF, Unnikrisnan GU, Hussein AI. “Bone Mechanical Properties in Healthy and Diseased States”. Annu Rev Biomed Eng. Jun 2018 4;20:e119-143. doi: 10.1146/annurev-bioeng-062117-121139. PMID: 29865872; PMCID: PMC6053074.
  • O’Neill F, Condon F, McGloughlin T, Lenehan B, Coffey C, Walsh M. “Validity of synthetic bone as a substitute for osteoporotic cadaveric femoral heads in mechanical testing” Bone & Joint Research Apr 2012, 1;4, doi: 10.1302/2046-3758.14.2000044.
  • ESUN homepage, “PLA filament”, http://www.esun3d.net/
  • Bohl MA, Morgan CD, Mooney MA, Repp GJ, Lehrman JN, Kelly BP, Chang SW, Turner JD, Kakarla UK. “Biomechanical Testing of a 3D-printed L5 Vertebral Body Model”. Cureus. Jan 2019, 15;11(1):e3893. doi: 10.7759/cureus.3893.
  • Bohl, MA, Mooney MA, Repp GJ, Nakaji P, Chang SW, Turner JD, Kakarla UK, “The Barrow Biomimetic Spine, Fluoroscopic Analysis of a Synthetic Spine Model Made of Variable 3D-printed Materials and Print Parameters” Spine: Dec 2018, 43;23:E1368-1375. doi: 10.1097/BRS.0000000000002715.
  • Hu, J, Wang, JH, Wang, R, Yu XB, Liu Y, Baur DA, “Analysis of biomechanical behavior of 3D printed mandibular graft with porous scaffold structure designed by topological optimization” 3D Printing in Medicine 5,5 (2019). https://doi.org/10.1186/s41205-019-0042-2.
  • Cubic Technology, ESUN PEEK 3D Print Filament 1.75mm 250g, https://www.cubictech.com.au/products/esun-epeek-3d-print-filament-1-75mm-250g.
  • Ken Giang, “PLA vs. ABS: What's the difference?”, https://www.3dhubs.com/knowledge-base/pla-vs-abs-whats-difference/.
  • Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments, ASTM International (2016).

The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments

Yıl 2020, Cilt: 2 Sayı: 2, 127 - 130, 31.12.2020

Öz

Bone is considered as an anisotropic structure due to the difference in its mechanical properties of cortical and spongiosal parts of the long bones. Researchers are attracted to bone related diseases and fractures in mechanical studies which leads them to seek alternative models. For decades artificial bones, especially Sawbones, are commonly preferred in biomechanical studies, which has similar density of natural bone. On the other hand, in the recent years there have been many studies by using 3D printer based bone models. In this study, we aimed to compare the artificial bone and 3D printed bone segments according to their mechanical properties.
Cross sectional dimensions of an anatomical femur was examined with the Computed Tomography (CT) and a solid model was created by this data. Fused Deposit Manufacturing (FDM) technique and PLA filament was used in the specimen production. Two groups of bone segments produced by using a 3D printer at cortical thicknesses of 1.2 mm and 2.8 mm with a height of 10 mm. These groups were compared with sawbones cut in 10 mm heights. Biomechanical compression test was performed in three groups at a speed of 2 mm / min at 1000 N.
As a result, the average of maximum force for sawbone, 1.2 mm and 2.8 mm thicknesses were 1006.3 N, 1009.5 N and 1010.6 N, respectively. Meanwhile, the average of maximum displacement for sawbone, 1.2 mm and 2.8 mm thicknesses were 0.203 mm, 0.183 mm and 0.191 mm, respectively. In conclusion, 3D printed bone models were found to be a good alternative for biomechanical analysis due to its similar force and displacement ratios.

Kaynakça

  • Bankoff ADP, “Biomechanical Characteristics of the Bone”, in Human Musculoskeletal Biomechanics, Edited by Tarun Goswami, First published August, 2011, ISBN 978-953-307-638-6, doi: 10.5772/1547.
  • Morgan EF, Unnikrisnan GU, Hussein AI. “Bone Mechanical Properties in Healthy and Diseased States”. Annu Rev Biomed Eng. Jun 2018 4;20:e119-143. doi: 10.1146/annurev-bioeng-062117-121139. PMID: 29865872; PMCID: PMC6053074.
  • O’Neill F, Condon F, McGloughlin T, Lenehan B, Coffey C, Walsh M. “Validity of synthetic bone as a substitute for osteoporotic cadaveric femoral heads in mechanical testing” Bone & Joint Research Apr 2012, 1;4, doi: 10.1302/2046-3758.14.2000044.
  • ESUN homepage, “PLA filament”, http://www.esun3d.net/
  • Bohl MA, Morgan CD, Mooney MA, Repp GJ, Lehrman JN, Kelly BP, Chang SW, Turner JD, Kakarla UK. “Biomechanical Testing of a 3D-printed L5 Vertebral Body Model”. Cureus. Jan 2019, 15;11(1):e3893. doi: 10.7759/cureus.3893.
  • Bohl, MA, Mooney MA, Repp GJ, Nakaji P, Chang SW, Turner JD, Kakarla UK, “The Barrow Biomimetic Spine, Fluoroscopic Analysis of a Synthetic Spine Model Made of Variable 3D-printed Materials and Print Parameters” Spine: Dec 2018, 43;23:E1368-1375. doi: 10.1097/BRS.0000000000002715.
  • Hu, J, Wang, JH, Wang, R, Yu XB, Liu Y, Baur DA, “Analysis of biomechanical behavior of 3D printed mandibular graft with porous scaffold structure designed by topological optimization” 3D Printing in Medicine 5,5 (2019). https://doi.org/10.1186/s41205-019-0042-2.
  • Cubic Technology, ESUN PEEK 3D Print Filament 1.75mm 250g, https://www.cubictech.com.au/products/esun-epeek-3d-print-filament-1-75mm-250g.
  • Ken Giang, “PLA vs. ABS: What's the difference?”, https://www.3dhubs.com/knowledge-base/pla-vs-abs-whats-difference/.
  • Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments, ASTM International (2016).
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Araştırma Makaleleri
Yazarlar

R. Bugra Husemoglu 0000-0003-1979-160X

Gizem Baysan 0000-0002-3195-9156

Pinar Ertugruloglu 0000-0002-9385-3904

Ayşe Tuç Yücel 0000-0001-8374-538X

Hasan Havıtçıoğlu 0000-0001-8169-3539

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 2

Kaynak Göster

APA Husemoglu, R. B., Baysan, G., Ertugruloglu, P., Tuç Yücel, A., vd. (2020). The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments. Journal of Medical Innovation and Technology, 2(2), 127-130.
AMA Husemoglu RB, Baysan G, Ertugruloglu P, Tuç Yücel A, Havıtçıoğlu H. The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments. Journal of Medical Innovation and Technology. Aralık 2020;2(2):127-130.
Chicago Husemoglu, R. Bugra, Gizem Baysan, Pinar Ertugruloglu, Ayşe Tuç Yücel, ve Hasan Havıtçıoğlu. “The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments”. Journal of Medical Innovation and Technology 2, sy. 2 (Aralık 2020): 127-30.
EndNote Husemoglu RB, Baysan G, Ertugruloglu P, Tuç Yücel A, Havıtçıoğlu H (01 Aralık 2020) The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments. Journal of Medical Innovation and Technology 2 2 127–130.
IEEE R. B. Husemoglu, G. Baysan, P. Ertugruloglu, A. Tuç Yücel, ve H. Havıtçıoğlu, “The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments”, Journal of Medical Innovation and Technology, c. 2, sy. 2, ss. 127–130, 2020.
ISNAD Husemoglu, R. Bugra vd. “The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments”. Journal of Medical Innovation and Technology 2/2 (Aralık 2020), 127-130.
JAMA Husemoglu RB, Baysan G, Ertugruloglu P, Tuç Yücel A, Havıtçıoğlu H. The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments. Journal of Medical Innovation and Technology. 2020;2:127–130.
MLA Husemoglu, R. Bugra vd. “The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments”. Journal of Medical Innovation and Technology, c. 2, sy. 2, 2020, ss. 127-30.
Vancouver Husemoglu RB, Baysan G, Ertugruloglu P, Tuç Yücel A, Havıtçıoğlu H. The Mechanical Comparison of Artificial Bone and 3D Printed Bone Segments. Journal of Medical Innovation and Technology. 2020;2(2):127-30.