Araştırma Makalesi
BibTex RIS Kaynak Göster

Pan-immune inflammatory value a new diagnostic biomarker in postmenopausal osteoporosis

Yıl 2024, Cilt: 5 Sayı: 2, 105 - 111, 30.04.2024
https://doi.org/10.47582/jompac.1447017

Öz

Aims: Postmenopausal osteoporosis (PMOP) is one of the most common bone diseases. We aimed to investigate the relationship between pan-immune inflammatory value and decreased bone mineral density in postmenopausal women.
Methods: This prospective cross-sectional study was composed of 186 postmenopausal women. Osteoporosis was diagnosed with dual‐energy X‐ray absorptiometry (DEXA) results according to World Health Organization (WHO) recommendations and patients were separated into 3 groups; 1. control group with a T-score >-1; 2. group osteopenia with a T-score between -1.0 and -2.5; 3. group osteoporosis with a T-score ≤-2.5. After the physical examinations of all patients, venous blood samples were collected and the pan-immune inflammation value (PIV) was calculated. The parameters were evaluated statistically with the PIV value between the groups.
Results: Groups are similar in terms of age, menopausal age, education, and occupation. PIV was significantly higher in postmenopausal women with osteoporosis than women with osteopenia and the control group (p<0.001, p<0.001). PIV was significantly higher in postmenopausal women with osteopenia than the control group (p<0.001). Distinguishing between osteoporosis and osteopenia, PIV ≥306.20 was 72.6% sensitivity, 69.4% specificity, and 71.7% negative predictive value. Distinguishing between osteopenia and control, PIV ≥152.02 was 85.5% sensitivity, 56.5% specificity, 66.3% positive predictive value, and 79.5% negative predictive value.
Conclusion: In our study, we found that the PIV was statistically higher in PMOP, it was also statistically higher in postmenopausal women with osteopenia compared to healthy controls. We believe that PIV can be a cheap, easy, and reliable evaluation parameter for determining the risk of osteoporosis and osteopenia in women with PMOP.

Kaynakça

  • 1. Cosman F, de Beur SJ, LeBoff M, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteopor Int. 2014;25(10):2359-2381.
  • 2. LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteopor Int. 2022;33(10):2049-2102.
  • 3. Kanis JA, Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteopor Int. 1994;4:368-381.
  • 4. Kanis J, Johnell O, Oden A, Sernbo I, Redlund-Johnell I, Dawson A, et al. Long-term risk of osteoporotic fracture in Malmö. Osteoporosis international. 2000;11:669-74.
  • 5. Melton LJ, Chrischilles EA, Cooper C, Lane AW, Riggs BL. How many women have osteoporosis? JBMR Anniversary Classic. J Bone Miner Res. 2005;20(5):886-892.
  • 6. Johnston CB, Dagar M. Osteoporosis in older adults. Med Clin. 2020;104(5):873-884.
  • 7. Takayanagi H, Ogasawara K, Hida S, et al. T-cell mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408(6812):600-605.
  • 8. Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 2021;12:687551.
  • 9. Zhao R, Wang X, Feng F. Upregulated cellular expression of IL-17 by CD4+ T-cells in osteoporotic postmenopausal women. Ann Nutr Metab. 2016; 68(2):113-118.
  • 10. Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med. 2012;209(2):319-334.
  • 11. Kutsal FYG. Kemik mineral yoğunluğu ölçümü ve kemik yapının görüntülenmesi. Türkiye Klinikleri Fiziksel Tıp ve Rehabilitasyon-Özel Konular. 2019;12:47-52.
  • 12. Huang C, Li S. Association of blood neutrophil lymphocyte ratio in the patients with postmenopausal osteoporosis. Pakistan J Med Sci. 2016;32(3):762.
  • 13. Bala MM, Bala KA. Bone mineral density (BMD) and neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), and platelet-lymphocyte ratio (PLR) in childhood thyroid diseases. Eur Rev Med Pharmacol Sci. 2022;26(6):1945-1951.
  • 14. Eroğlu S, Karataş G. Platelet/lymphocyte ratio is an independent predictor for osteoporosis. Saudi Med J. 2019;40(4):360.
  • 15. Fang H, Zhang H, Wang Z, Zhou Z, Li Y, Lu L. Systemic immune‐inflammation index acts as a novel diagnostic biomarker for postmenopausal osteoporosis and could predict the risk of osteoporotic fracture. J Clin Laborat Analys. 2020;34(1):e23016.
  • 16. Fucà G, Guarini V, Antoniotti C, et al. The pan-immune-inflammation value is a new prognostic biomarker in metastatic colorectal cancer: results from a pooled-analysis of the Valentino and TRIBE first-line trials. Br J Cancer. 2020;123(3):403-409.
  • 17. Susok L, Said S, Reinert D, et al. The pan-immune-inflammation value and systemic immune-inflammation index in advanced melanoma patients under immunotherapy. J Cancer Res Clin Oncol. 2022;148(11):3103-3108.
  • 18. Tutan D, Doğan AG. Pan-immune-inflammation index as a biomarker for rheumatoid arthritis progression and diagnosis. Cureus. 2023;15(10):e46609.
  • 19. Lee LE, Ahn SS, Pyo JY, Song JJ, Park YB, Lee SW. Pan-immune-inflammation value at diagnosis independently predicts all-cause mortality in patients with antineutrophil cytoplasmic antibody-associated vasculitis. Clin Exp Rheumatol. 2021;39(2):S88-S93.
  • 20. Zhang S, Ni W. High systemic immune‐inflammation index is relevant to osteoporosis among middle‐aged and older people: a cross‐sectional study. Immun, Inflamm Dis. 2023;11(8):e992.
  • 21. Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteopor Int. 2019;30(1):3-44.
  • 22. Jordan, KM, Cooper C. Epidemiology of osteoporosis. Best Pract Res Clin Rheumatol. 2002;5(16):795-806.
  • 23. Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839-3848.
  • 24. Cenci S, Weitzmann MN, Roggia C, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106(10):1229-1237.
  • 25. Hajishengallis G, Moutsopoulos NM, Hajishengallis E, Chavakis T. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol. 2016;28(2):146-158.
  • 26. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122(2):337-351.
  • 27. Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: role of innate immune cells in osteoporosis. Front Immunol. 2021;12:687037.
  • 28. Kale I. The predictive role of monocyte-lymphocyte ratio and platelet-lymphocyte ratio in postmenopausal osteoporosis. J Clin Invest Surg. 2021;6(2):141-147.
  • 29. Du YN, Chen YJ, Zhang HY, Wang X, Zhang ZF. Inverse association between systemic immune-inflammation index and bone mineral density in postmenopausal women. Gynecol Endocrinol. 2021;37(7):650-654.
  • 30. Weng W, Li H, Zhu S. An overlooked bone metabolic disorder: cigarette smoking-induced osteoporosis. Genes. 2022;13(5):806.
  • 31. Trevisan C, Alessi A, Girotti G, et al. The impact of smoking on bone metabolism, bone mineral density and vertebral fractures in postmenopausal women. J Clin Densitomet. 2020;23(3):381-389.

Pan-immün inflamatuar değer, postmenopozal osteoporozda yeni bir tanısal biyobelirteç

Yıl 2024, Cilt: 5 Sayı: 2, 105 - 111, 30.04.2024
https://doi.org/10.47582/jompac.1447017

Öz

Amaç: Postmenopozal osteoporoz (PMOP) en yaygın kemik hastalıklarından biridir. Bu çalışmada postmenopozal kadınlarda pan-immün inflamatuar değer ile azalmış kemik mineral yoğunluğu arasındaki ilişkiyi araştırmayı amaçladık.
Gereç ve Yöntemler: Bu prospektif kesitsel çalışma 186 postmenopozal kadından oluşmaktadır. Osteoporoz tanısı Dünya Sağlık Örgütü (WHO) önerilerine göre dual-enerji X-ray absorpsiyometri (DEXA) sonuçları ile konuldu ve hastalar 3 gruba ayrıldı; 1. T-skoru >-1 olan kontrol grubu; 2. T-skoru -1,0 ile -2,5 arasında olan osteopeni grubu; 3. T-skoru ≤-2,5 olan osteoporoz grubu. Tüm hastaların fiziksel muayenelerinin ardından venöz kan örnekleri alındı ve pan-immün inflamasyon değeri (PIV) hesaplandı. Gruplar arasında PIV değeri ile osteoporoz düzeyi arasındaki ilişki istatistiksel olarak değerlendirildi.
Bulgular: Gruplar yaş, menopoz yaşı, eğitim ve meslek açısından benzerdir. PIV değeri postmenopozal osteoporozlu kadınlarda osteopenili kadınlara ve kontrol grubuna göre anlamlı olarak daha yüksektir (p<0.001, p<0.001). PIV, osteopenisi olan postmenopozal kadınlarda kontrol grubuna göre anlamlı derecede yüksektir(p<0.001). Osteoporoz ve osteopeni ayrımında, PIV ≥306.20 %72.6 duyarlılık, %69.4 özgüllük ve %71.7 negatif prediktif değere sahiptir. Osteopeni ve sağlıklı kontrol arasındaki ayrımda, PIV ≥152.02 iken %85.5 duyarlılık, %56.5 özgüllük, %66.3 pozitif prediktif değer ve %79.5 negatif prediktif mevcuttur.
Sonuç: Çalışmamızda, PIV'nin PMOP'de istatistiksel olarak daha yüksek olduğunu, ayrıca osteopenisi olan postmenopozal kadınlarda sağlıklı kontrollere kıyasla istatistiksel olarak daha yüksek olduğunu saptadık. PIV'in PMOP'lu kadınlarda osteoporoz ve osteopeni riskini belirlemede ucuz, kolay ve güvenilir bir değerlendirme parametresi olabileceğine inanıyoruz.

Kaynakça

  • 1. Cosman F, de Beur SJ, LeBoff M, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteopor Int. 2014;25(10):2359-2381.
  • 2. LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician’s guide to prevention and treatment of osteoporosis. Osteopor Int. 2022;33(10):2049-2102.
  • 3. Kanis JA, Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteopor Int. 1994;4:368-381.
  • 4. Kanis J, Johnell O, Oden A, Sernbo I, Redlund-Johnell I, Dawson A, et al. Long-term risk of osteoporotic fracture in Malmö. Osteoporosis international. 2000;11:669-74.
  • 5. Melton LJ, Chrischilles EA, Cooper C, Lane AW, Riggs BL. How many women have osteoporosis? JBMR Anniversary Classic. J Bone Miner Res. 2005;20(5):886-892.
  • 6. Johnston CB, Dagar M. Osteoporosis in older adults. Med Clin. 2020;104(5):873-884.
  • 7. Takayanagi H, Ogasawara K, Hida S, et al. T-cell mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408(6812):600-605.
  • 8. Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-cell mediated inflammation in postmenopausal osteoporosis. Front Immunol. 2021;12:687551.
  • 9. Zhao R, Wang X, Feng F. Upregulated cellular expression of IL-17 by CD4+ T-cells in osteoporotic postmenopausal women. Ann Nutr Metab. 2016; 68(2):113-118.
  • 10. Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med. 2012;209(2):319-334.
  • 11. Kutsal FYG. Kemik mineral yoğunluğu ölçümü ve kemik yapının görüntülenmesi. Türkiye Klinikleri Fiziksel Tıp ve Rehabilitasyon-Özel Konular. 2019;12:47-52.
  • 12. Huang C, Li S. Association of blood neutrophil lymphocyte ratio in the patients with postmenopausal osteoporosis. Pakistan J Med Sci. 2016;32(3):762.
  • 13. Bala MM, Bala KA. Bone mineral density (BMD) and neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), and platelet-lymphocyte ratio (PLR) in childhood thyroid diseases. Eur Rev Med Pharmacol Sci. 2022;26(6):1945-1951.
  • 14. Eroğlu S, Karataş G. Platelet/lymphocyte ratio is an independent predictor for osteoporosis. Saudi Med J. 2019;40(4):360.
  • 15. Fang H, Zhang H, Wang Z, Zhou Z, Li Y, Lu L. Systemic immune‐inflammation index acts as a novel diagnostic biomarker for postmenopausal osteoporosis and could predict the risk of osteoporotic fracture. J Clin Laborat Analys. 2020;34(1):e23016.
  • 16. Fucà G, Guarini V, Antoniotti C, et al. The pan-immune-inflammation value is a new prognostic biomarker in metastatic colorectal cancer: results from a pooled-analysis of the Valentino and TRIBE first-line trials. Br J Cancer. 2020;123(3):403-409.
  • 17. Susok L, Said S, Reinert D, et al. The pan-immune-inflammation value and systemic immune-inflammation index in advanced melanoma patients under immunotherapy. J Cancer Res Clin Oncol. 2022;148(11):3103-3108.
  • 18. Tutan D, Doğan AG. Pan-immune-inflammation index as a biomarker for rheumatoid arthritis progression and diagnosis. Cureus. 2023;15(10):e46609.
  • 19. Lee LE, Ahn SS, Pyo JY, Song JJ, Park YB, Lee SW. Pan-immune-inflammation value at diagnosis independently predicts all-cause mortality in patients with antineutrophil cytoplasmic antibody-associated vasculitis. Clin Exp Rheumatol. 2021;39(2):S88-S93.
  • 20. Zhang S, Ni W. High systemic immune‐inflammation index is relevant to osteoporosis among middle‐aged and older people: a cross‐sectional study. Immun, Inflamm Dis. 2023;11(8):e992.
  • 21. Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteopor Int. 2019;30(1):3-44.
  • 22. Jordan, KM, Cooper C. Epidemiology of osteoporosis. Best Pract Res Clin Rheumatol. 2002;5(16):795-806.
  • 23. Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839-3848.
  • 24. Cenci S, Weitzmann MN, Roggia C, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106(10):1229-1237.
  • 25. Hajishengallis G, Moutsopoulos NM, Hajishengallis E, Chavakis T. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol. 2016;28(2):146-158.
  • 26. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122(2):337-351.
  • 27. Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: role of innate immune cells in osteoporosis. Front Immunol. 2021;12:687037.
  • 28. Kale I. The predictive role of monocyte-lymphocyte ratio and platelet-lymphocyte ratio in postmenopausal osteoporosis. J Clin Invest Surg. 2021;6(2):141-147.
  • 29. Du YN, Chen YJ, Zhang HY, Wang X, Zhang ZF. Inverse association between systemic immune-inflammation index and bone mineral density in postmenopausal women. Gynecol Endocrinol. 2021;37(7):650-654.
  • 30. Weng W, Li H, Zhu S. An overlooked bone metabolic disorder: cigarette smoking-induced osteoporosis. Genes. 2022;13(5):806.
  • 31. Trevisan C, Alessi A, Girotti G, et al. The impact of smoking on bone metabolism, bone mineral density and vertebral fractures in postmenopausal women. J Clin Densitomet. 2020;23(3):381-389.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endokrinoloji, Fiziksel Tıp ve Rehabilitasyon
Bölüm Research Articles [en] Araştırma Makaleleri [tr]
Yazarlar

Pınar Özge Başaran 0000-0003-3504-6124

Duygu Tutan 0000-0003-0440-1146

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 4 Mart 2024
Kabul Tarihi 19 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

AMA Başaran PÖ, Tutan D. Pan-immune inflammatory value a new diagnostic biomarker in postmenopausal osteoporosis. J Med Palliat Care / JOMPAC / Jompac. Nisan 2024;5(2):105-111. doi:10.47582/jompac.1447017

images?q=tbn:ANd9GcRrI_RWgGRe7JRpz3PAnkt2YEFD2l6WEmgHMzuM2w9b&s

f9ab67f.png     

7yziemq.png




COPE.jpg

icmje_1_orig.png

cc.logo.large.png

ncbi.png

ORCID_logo.png

images?q=tbn:ANd9GcQk2AsOdjP67NBkYAqd8FHwCmh0_3dkMrXh3mFtfPKXwIai7h0lIds8QYM9YjKMhZw8iP0&usqp=CAU

logo_world_of_journals_no_margin.png1280px-WorldCat_logo.svg.png                             images?q=tbn:ANd9GcRrI_RWgGRe7JRpz3PAnkt2YEFD2l6WEmgHMzuM2w9b&s


Dergimiz; TR-Dizin ULAKBİM, ICI World of  Journal's, Index Copernicus, Directory of Research Journals Indexing (DRJI), General Impact Factor, Google Scholar, Researchgate, WorldCat (OCLC), CrossRef (DOI), ROAD, ASOS İndeks, Türk Medline İndeks, Eurasian Scientific Journal Index (ESJI) ve Türkiye Atıf Dizini'nde indekslenmektedir.

EBSCO, DOAJ, OAJI, ProQuest dizinlerine müracaat yapılmış olup, değerlendirme aşamasındadır.

Makaleler "Çift-Kör Hakem Değerlendirmesi”nden geçmektedir.

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği: Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN].

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser.  About predatory/questionable journals and journal charge policy

Not: Dergimiz WOS indeksli değildir ve bu nedenle Q  sınıflamasına dahil değildir.
Yağmacı/şüpheli dergilerle ilgili Yüksek Öğretim Kurumu (YÖK) kararları ve yazar açıklama metni ile dergi ücret politikası: Yağmacı/Şaibeli Dergiler ve Dergi Ücret Politikası