Derleme
BibTex RIS Kaynak Göster

Eklemeli imalat yönteminde filament olarak kullanılan polimerik malzemeler

Yıl 2023, Cilt: 2 Sayı: 1, 45 - 67, 26.12.2023

Öz

Bir akıllı üretim sistemi olarak kabul gören eklemeli imalat (Eİ) tekniği, çeşitli uygulamalar için karmaşık ve verimli parçalar geliştirmek için yaygın şekilde kullanılmaktadır. Eİ işlemlerinde filament malzemesi olarak tercih edilen çoğuz (polimer) çeşitleri, istenilen yüzey, yapışma ve mekanik özellikleri sağlamaları açısından sınırlı sayıdadır. Bu çalışmada, üç boyutlu yazıcılarda kullanılan çoğuzlar ve özellikleri, örnek çalışmalar incelenerek derlenmiştir. Mevcut kullanılan polimerik malzemelere ek olarak, Eİ yöntemine entegre edilen yeni nesil çoğuz kompozitler, medikalden yapı malzemelerine kadar birçok endüstriyel alanda kullanım örnekleri çeşitlendirilerek paylaşılmıştır. Her geçen gün yenilikçi uygulamalar geliştirilen ve geleceğin imalat teknolojisi olarak öngörülen Eİ işlemlerinin teknolojik gelişimine, filament malzemesi olarak kullanılacak özgün polimerik malzemelerin üretimi ivme katma potansiyelindedir.

Kaynakça

  • 1. Jadhav A., Jadhav V.S., A review on 3D printing: An additive manufacturing technology, Materials Today: Proceedings 2022; 62(4): 2094-2099.
  • 2. Jiang J., Lou J., Hu G., Effect of support on printed properties in fused deposition modelling processes, Virtual and Physical Prototyping 2019; 14(4): 308-315.
  • 3. Gibson I., Rosen D., Stucker B., Khorasani M., Chapter 1-Introduction and Basic Principles, Additive Manufacturing Technologies; 2020: 1-21.
  • 4. Gaoa W., Zhang Y., Ramanujana D., Ramani K., Chenc Y., Williams C.B., Charlie Wang, C.C.L., Shina, Y.C., Zhang, S., Zavattieri, P.D., The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design 2015; 69: 65-89.
  • 5. Pereiraa T., Kennedyb J.V., Potgieter J., A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manufacturing 2019; 30: 11-18.
  • 6. Bozkurt Y., Gülsoy H., Karayel E., Eklemeli imalat teknolojilerinin tıbbi ekipmanların üretiminde kullanımı, El-Cezeri 2021; 8(2): 962-980.
  • 7. Erener Ş., Boz S., Modern üretim tekniklerinde eklemeli imalat sistemlerinin yeri ve kullanım alanları, Turkish Journal of Fashion Design and Management 2021; 3(1): 47-56.
  • 8. Jasiuk I., Abueidda D.W., Kozuch C., Pang S., Su F.Y., McKittrick, J., An overview on additive manufacturing of polymers, Journal of The Minerals, Metals & Materials Society 2018; 70: 275-283.
  • 9. Ligon S.C., Liska R., Stampfl J., Gurr M., Mulhaupt R., Polymers for 3D printing and customized additive manufacturing, Chemical Reviews 2017; 117(15): 10212.
  • 10. Leon A.C., Chen Q., Palaganas N.B., Palaganas J.O., Manapat J., Advincula R.C., High performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers 2016; 103: 141-155.
  • 11. Wang X., Jiang M., Zhou Z., Gou J., Hui D., 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017; 110: 442-458.
  • 12. Saroia J., Wang Y., Wei Q., Lei M., Li X., Guo Y., Zhang K., A review on 3D printed matrix polymer composites: its potential and future challenges. The International Journal of Advanced Manufacturing Technology 2019; 106(5-6): 1695-1721.
  • 13. Singh B., Kumar R., Singh J.C., Polymer matrix composites in 3D printing: A state of art review. Materials Today: Proceedings 2020; 33: 1562-1567.
  • 14. Bekas D.G., Hou Y., Liu Y., Panesar A., 3D printing to enable multifunctionality in polymer-based composites: A review. Composites Part B: Engineering 2019; 179: 107540.
  • 15. Jin M., Neuber C., Schmidt H.W., Tailoring polypropylene for extrusion-based additive manufacturing. Additive Manufacturing 2020; 33: 101101.
  • 16. González-Henríquez C.M., Sarabia-Vallejos M.A., Rodriguez-Hernandez J., Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science 2019; 94: 57-116.
  • 17. Spoerk M., Holzer C., Gonzalez-Gutierrez J., Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science 2020; 137(12): 48545.
  • 18. Verma N., Awasthi P., Gupta A., Banerjee S.S., Fused deposition modeling of polyolefins: Challenges and opportunities. Macromolecular Materials and Engineering. 2023; 308(1): 2200421.
  • 19. Zaldivar R.J., Mclouth T.D., Ferrelli G.L., Patel D.N., Hopkins A.R., Witkin D., Effect of initial filament moisture content on the microstructure and mechanical performance of ULTEM 9085 3D printed parts, Additive Manufacturing 2018; 24: 457-466.
  • 20. Kim E., Shin Y.J., Ahn S.H., The effects of moisture and temperature on the mechanical properties of additive manufacturing components: Fused deposition modeling. Rapid Prototyping Journal 2016; 22: 887-89.
  • 21. Auras R., Harte B., Selke S., An overview of polylactides as packaging materials. Macromolecular Bioscience 2004; 4(9): 835-864.
  • 22. Bajpai P.K., Singh I., Madaan J., Development and characterization of PLA-based green composites:A review. Journal of Thermoplastic Composite Materials 2014; 27(1): 52-81.
  • 23. Nagarajan V., Mohanty A.K., Misra M., Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering 2016; 4(6): 2899-2916.
  • 24. Rasal R.M., Janorkar A.V., Hirt D.E., Poly (lactic acid) modifications. Progress in Polymer Science 2010; 35(3): 338-356.
  • 25. Cisneros-López E.O., Pal A.K., Rodriguez A.U., Wu F., Misra M., Mielewski D.F., Kiziltas A., Mohanty A.K., Recycled poly (lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability 2020; 7: 100027.
  • 26. Ilyas R., Zuhri M.Y.M., Aisyah H.A., Asyraf M.R.M., Hassan S.A., Zainudin E.S., Sapuan S.M., Sharma S., Bangar S.P., Jumaidin R., Nawab Y., Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 2022; 14(1): 202.
  • 27. Murariu M., Dubois P., PLA composites: From production to properties. Advanced drug delivery reviews 2016; 107: 17-46.
  • 28. Siakeng R., Jawaid M., Ariffin H., Sapuan S.M., Asim M., Saba N., Natural fiber reinforced polylactic acid composites: A review. Polymer Composites 2019; 40(2): 446-463.
  • 29. Ahmad F., Choi H.S., Park M.K., A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering 2015; 300(1): 10-24.
  • 30. Akampumuza O., Wambua P.M., Ahmed A., Li W., Qin X.H., Review of the applications of biocomposites in the automotive industry. Polymer Composites 2017; 38(11): 2553-2569.
  • 31. Chauhan V., Kärki T., Varis J., Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials 2022; 35(8): 1169-1209.
  • 32. Musa L., Kumar N. K., Abd Rahim S.Z., Rasidi M.S.M., Rennie A.E.W., Rahman R., Azmi A.A., A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. Journal of Materials Research and Technology 2022; 20: 2841-2858.
  • 33. Nasir M.H.M., Taha M.M., Razali N., Ilyas R.A., Knight V.F., Norrrahim M.N.F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials 2022; 15(22): 8082.
  • 34. Sang L., Han S., Li Z., Yang X., Hou W., Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering 2019; 164: 629-639.
  • 35. Tayfun Ü., Arslan Ç., Doğan M., Bazalt elyaf yüzeyindeki silan katmanının polilaktit kompozitlerine güçlendirme etkinliğinin değerlendirilmesi. Journal of Materials and Mechatronics: A 2023; 4(1): 87-99.
  • 36. Odera R.S., Idumah C.I., Novel advancements in additive manufacturing of PLA: A review. Polymer Engineering & Science 2023; DOI: 10.1002/pen.26450.
  • 37. Tsou C.H., Yao W.H., Wu C.S., Tsou C.Y., Hung W.S., Chen J.C., Guo J., Yuan S., Wen E., Wang R.Y., Suen M.C., Preparation and characterization of renewable composites from Polylactide and Rice husk for 3D printing applications. Journal of Polymer Research 2019; 26: 227.
  • 38. Lee D., Wu G.Y., Parameters affecting the mechanical properties of three-dimensional (3D) printed carbon fiber-reinforced polylactide composites. Polymers 2020; 12(11): 2456.
  • 39. Moetazedian A., Gleadall A., Han X., Ekinci A., Mele E., Silberschmidt V.V., Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing 2021; 38: 101764.
  • 40. Singamneni S., Behera M.P., Truong D., Le Guen M.J., Macrae E., Pickering K., Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form. Journal of Materials Research and Technology 2021; 15: 936-949.
  • 41. Olam M., Tosun N., 3D-printed polylactide/hydroxyapatite/titania composite filaments. Materials Chemistry and Physics 2022; 276: 125267.
  • 42. Yang J., Li W., Mu B., Xu H., Hou X., Yang Y., Simultaneous toughness and stiffness of 3D printed nano-reinforced polylactide matrix with complete stereo-complexation via hierarchical crystallinity and reactivity. International Journal of Biological Macromolecules 2022; 202: 482-493.
  • 43. Thomas S., Datta J., Haponiuk J.T., Reghunadhan A., Polyurethane Polymers: Composites and Nanocomposites, Elsevier, Amsterdam, 2017.
  • 44. Atiqah A., Mastura M.T., Ali B. A.A., Jawaid M., Sapuan S.M., A review on polyurethane and its polymer composites. Current Organic Synthesis 2017; 14(2); 233-248.
  • 45. Engels H.W., Pirkl H.G., Albers R., Albach R.W., Krause J., Hoffmann A., Casselmann H., Dormish J., Polyurethanes: Versatile materials and sustainable problem solvers for today's challenges. Angewandte Chemie 2013; 52(36): 9422-9441.
  • 46. Das A., Mahanwar P., A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research 2020; 3(3): 93-101.
  • 47. Desai S.M., Sonawane R. Y., More A.P., Thermoplastic polyurethane for threedimensional printing applications: A review. Polymers for Advanced Technologies 2023; 34(7): 2061-2082.
  • 48. Rodríguez-Parada L., de la Rosa S., Mayuet P.F., Influence of 3D-printed TPU properties for the design of elastic products. Polymers 2021; 13(15): 2519.
  • 49. Kechagias J.D., Vidakis N., Petousis M., Parameter effects and process modeling of FFF-TPU mechanical response. Materials and Manufacturing Processes 2023; 38(3): 341-351.
  • 50. Xiao J., Gao Y., The manufacture of 3D printing of medical grade TPU. Progress in Additive Manufacturing 2017; 2: 117-123.
  • 51. Shin E.J., Park Y., Jung Y.S., Choi H.Y., Lee S., Fabrication and characteristics of flexible thermoplastic polyurethane filament for fused deposition modeling three‐dimensional printing. Polymer Engineering & Science 2022; 62(9): 2947-2957.
  • 52. Nace S.E., Tiernan J., Holland D., Ni Annaidh A., A comparative analysis of the compression characteristics of a thermoplastic polyurethane 3D printed in four infill patterns for comfort applications. Rapid Prototyping Journal 2021; 27(11): 24-36.
  • 53. Kaynak, C., Varsavas S.D., Performance comparison of the 3D-printed and injectionmolded PLA and its elastomer blend and fiber composites. Journal of Thermoplastic Composite Materials 2018; 32(4): 501-520.
  • 54. Wang F., Ji Y., Chen C., Zhang G., Chen Z., Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane. Journal of Polymer Research 2022; 29(8): 320.
  • 55. Gama N., Ferreira A., Barros-Timmons A., 3D printed thermoplastic polyurethane filled with polyurethane foams residues. Journal of Polymer and Environment 2020; 28: 1560-1570.
  • 56. Hohimer C., Christ J., Aliheidari N., Mo C., Ameli A., 3D printed thermoplastic polyurethane with isotropic material properties. Behavior and Mechanics of Multifunctional Materials and Composites 2017; 10165, 213-221.
  • 57. Lin X., Hao M., Ying J., Wang R., Lu Y., Gong M., Zhang L., Wang D., Zhang L., An insight into the tensile anisotropy of 3D-printed thermoplastic polyurethane. Additive Manufacturing 2022; 60: 103260.
  • 58. Moore J.D., Acrylonitrile-butadiene-styrene (ABS)-a review. Composites 1973; 4 (3): 118-130.
  • 59. Krache R., Debbah I., Some Mechanical and thermal properties of PC/ABS blends. Materials Sciences and Applications 2011; 2: 404-410.
  • 60. Kulshreshtha A.K., A review of commercial polyblends based on PVC, ABS, and PC. Polymer-Plastics Technology and Engineering 1993; 32(6): 551-578.
  • 61. Kim H., Woo S.S., Recent Developments and Perspectives in ABS Resin. Polymers and Other Advanced Materials: Emerging Technologies and Business Opportunities 1995;185-188.
  • 62. Cirmad H., Tirkes S., Tayfun U., Evaluation of flammability, thermal stability and mechanical behavior of expandable graphite-reinforced acrylonitrile–butadiene–styrene terpolymer. Journal of Thermal Analysis and Calorimetry 2022; 147: 2229-2237.
  • 63. Arslan C., Dogan M., Effect of fiber amount on mechanical and thermal properties of (3-aminopropyl) triethoxysilane treated basalt fiber reinforced ABS composites. Materials Research Express 2019; 6(11): 115340.
  • 64. Olivera S., Muralidhara H.B., Venkatesh K., Gopalakrishna K., Vivek C.S., Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review. Journal of Materials Science 2016; 51: 3657-3674.
  • 65. Rodríguez J.F., Thomas J.P., Renaud J.E., Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials experimental investigation. Rapid Prototyping Journal 2011; 7(3): 148-158.
  • 66. Vicente C.M., Martins T.S., Leite M., Ribeiro A., Reis L., Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polymers for Advenced Technologies 2020; 31(3): 501-507.
  • 67. Rashid A.A., Koç M., Fused filament fabrication process: A review of numerical simulation techniques. Polymers 2021; 13(20): 3534.
  • 68. Olivera S., Muralidhara H.B., Venkatesh K., Gopalakrishna K., Vivek C.S., Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review. Journal of Materials Science 2016; 51: 3657-3674.
  • 69. Karabeyoglu S.S., Eksi O., Yaman P., Kucukyildirim B.O., Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts. Journal of Polymer Engineering 2021; 41(10): 854-862.
  • 70. Shubham P., Sikidar A., Chand T., The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling. Key Engineering Materials 2016; 706: 63-67.
  • 71. Alhallak L.M., Tirkes S, Tayfun U., Mechanical, thermal, melt-flow and morphological characterizations of bentonite-filled ABS copolymer. Rapid Prototyping Journal 2020; 26(7): 1305-1312.
  • 72. Bodaghi M., Sadooghi A., Bakhshi M., Hashemi S.J., Rahmani K., Keshavarz Motamedi M., Glass fiber reinforced acrylonitrile butadiene styrene composite gears by FDM 3D printing. Advanced Materials Interfaces 2023; 2300337. DOI: 10.1002/admi.202300337
  • 73. Arslan C., Dogan M., The effects of fiber silane modification on the mechanical performance of chopped basalt fiber/ABS composites. Journal of Thermoplastic Composite Materials 2020; 33(11): 1449-1465.
  • 74. Tandon S., Kacker R., Singh S.K., Correlations on average tensile strength of 3dprinted acrylonitrile butadiene styrene, polylactic acid, and polylactic acid+ carbon fiber specimens. Advanced Engineering Materials 2023; 25(9): 2201413.
  • 75. Akar A.O., Yildiz U.H., Tirkes S., Tayfun U., Hacivelioglu F., Influence of carbon nanotube inclusions to electrical, thermal, physical and mechanical behaviors of carbon-fiberreinforced ABS composites. Carbon Letters 2022; 32(4): 987-998.
  • 76. Alghadi A.M., Tirkes S., Tayfun, U., Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Materials Research Express 2019; 7(1): 015301.
  • 77. Tayfun Ü., Tirkeş S., Doğan M., Tirkeş S., Zahmakıran M., Comparative performance study of acidic pumice and basic pumice ınclusions for acrylonitrile–butadiene–styrene-based composite filaments. 3D Printing and Additive Manufacturing 2022; DOI: 10.1089/3dp.2022.0228
  • 78. Kechagias J.D., Fountas N.A., Ninikas K., Petousis M., Vidakis N., Vaxevanidis N., Surface characteristics investigation of 3D-printed PET-G plates during CO2 laser cutting. Materials and Manufacturing Processes 2022; 37(11): 1347-1357.
  • 79. Soleyman E., Aberoumand M., Rahmatabadi D., Soltanmohammadi K., Ghasemi I., Baniassadi M., Abrinia K., Baghani M., Assessment of controllable shape transformation, potential applications, and tensile shape memory properties of 3D printed PETG. Journal of Materials Research and Technology 2022; 18: 4201-4215.
  • 80. Bhandari S., Lopez-Anido R.A., Gardner, D.J., Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing 2019; 30: 100922.
  • 81. Alarifi I.M., PETG/carbon fiber composites with different structures produced by 3D printing. Polymer Testing 2023; 120: 107949.
  • 82. Kasmi S., Ginoux G., Allaoui S., Alix, S., Investigation of 3D printing strategy on the mechanical performance of coextruded continuous carbon fiber reinforced PETG. Journal of Applied Polymer Science 2021; 138(37): 50955.
  • 83. Alarifi I.M., Mechanical properties and numerical simulation of FDM 3D printed PETG/carbon composite unit structures. Journal of Materials Research and Technology 2023; 23: 656-669.
  • 84. Kannan S., Ramamoorthy M., Sudhagar E., Gunji B., Mechanical characterization and vibrational analysis of 3D printed PETG and PETG reinforced with short carbon fiber. AIP Conference Proceedings 2020; 2270(1): 030004.
  • 85. Valvez S., Silva A.P., Reis P.N., Compressive behaviour of 3D-printed PETG composites. Aerospace 2022; 9(3): 124.
  • 86. Balou S., Ahmed I., Priye A., From waste to filament: Development of biomassderived activated carbon-reinforced PETG composites for sustainable 3D printing. ACS Sustainable Chemistry & Engineering 2023; 11(34): 12667-12676.
  • 87. Veselý P., Froš D., Hudec T., Sedláček J., Ctibor P., Dušek, K., Dielectric spectroscopy of PETG/TiO2 composite intended for 3D printing. Virtual and Physical Prototyping 2023; 18(1): e2170253.
  • 88. Kim H., Ryu K.H., Baek D., Khan T.A., Kim H.J., Shin S., Hyun J., Ahn J.S., Ahn S.J., Kim H.J., Koo J., 3D printing of polyethylene terephthalate glycol–sepiolite composites with nanoscale orientation. ACS Applied Materials & Interfaces 2020; 12(20): 23453-23463.
  • 89. Vijayasankar K.N., Bonthu D., Doddamani M., Pati F., Additive manufacturing of short silk fiber reinforced PETG composites. Materials Today Communications 2022; 33: 104772.
  • 90. Mahesh V., George J.P., Mahesh V., Chakraborthy H., Mukunda S., Ponnusami S.A., Dry-sliding wear properties of 3D printed PETG/SCF/OMMT nanocomposites: Experimentation and model predictions using artificial neural network. Journal of Reinforced Plastics and Composites 2023; DOI: 10.1177/073168442311888.
  • 91. Mahesh V., Joseph A.S., Mahesh V., Harursampath D., VN C., Investigation on the mechanical properties of additively manufactured PETG composites reinforced with OMMT nanoclay and carbon fibers. Polymer Composites 2021; 42(5): 2380-2395.
  • 92. Calignano F., Lorusso M., Roppolo I., Minetola P., Investigation of the mechanical properties of a carbon fibre-reinforced nylon filament for 3D printing. Machines 2020; 8: 52.
  • 93. Singh R., Singh J., Singh, S., Investigation for dimensional accuracy of AMC prepared by FDM assisted investment casting using nylon-6 waste based reinforced filament. Measurement 2016; 78: 253-259.
  • 94. Farina I., Singh N., Colangelo F., Luciano R., Bonazzi G., Fraternali F., Highperformance nylon-6 sustainable filaments for additive manufacturing. Materials 2019; 12: 3955.
  • 95. Aslanzadeh S., Saghlatoon H., Honari M.M., Mirzavand R., Montemagno C., Mousavi P., Investigation on electrical and mechanical properties of 3D printed nylon 6 for RF/microwave electronics applications. Additive Manufacturing 2018; 21: 69-75.
  • 96. Wang P., Zou B., Xiao H.C., Ding S.L., Huang C.Z., Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. Journal of Materials Processing Technology 2019; 271: 62-74.
  • 97. Dua R., Rashad Z., Spears J., Dunn G., Maxwell M., Applications of 3d-printed peek via fused filament fabrication: A systematic review. Polymers 2021; 13(22): 4046.
  • 98. Liu Z., Wang G., Huo Y., Zhao W., Research on precise control of 3D print nozzle temperature in PEEK material. AIP Conference Proccedings 2017; 1890: 040076.
  • 99. Kang J., Zhang J., Zheng J., Wang L., Li D., Liu S., 3D-printed PEEK implant for mandibular defects repair-a new method. Journal of the Mechanical Behavior of Biomedical Materials 2021; 116: 104335.
  • 100. Rinaldi M., Cecchini F., Pigliaru L., Ghidini T., Lumaca F., Nanni F., Additive manufacturing of polyether ether ketone (PEEK) for space applications: A nanosat polymeric structure. Polymers 2021; 13: 11.
  • 101. Wickramasinghe S., Do T., Tran P., FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers 2020; 12: 1529.
  • 102. Rodzeń K., Harkin-Jones E., Wegrzyn M., Sharma P.K., Zhigunov A., Improvement of the layer-layer adhesion in FFF 3D printed PEEK/carbon fibre composites. Composites Part A: Applied Science and Manufacturing 2021; 149: 106532.
  • 103. Stepashkin А.А., Chukov D.I., Senatov F.S., Salimon A.I., Korsunsky A.M., Kaloshkin S.D., 3D-printed PEEK-carbon fiber (CF) composites: Structure and thermal properties. Composites Science and Technology 2018; 164: 319-326.
  • 104. Gómez-García D., Díaz-Álvarez A., Youssef G., Miguélez H., Díaz-Álvarez J., Machinability of 3D printed peek reinforced with short carbon fiber. Composites Part C 2023; 100387.
  • 105. Han X., Yang D., Yang C., Spintzyk S., Scheideler L., Li P., Li D., Geis-Gerstorfer J. and Rupp F., Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. Journal of Clinical Medicine 2019; 8(2): 240.
  • 106. Blanco I., Rapisarda M., Portuesi S., Ognibene G., Cicala G., Thermal behavior of PEI/PETG blends for the application in fused deposition modelling (FDM). AIP Conference Proceedings 2018; 1981: 020181.
  • 107. El Magri A., Vanaei S., Vaudreuil S., An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Performance Polymers 2021; 33(8): 862-880.
  • 108. Cicala G., Ognibene G., Portuesi S., Blanco I., Rapisarda M., Pergolizzi E., Recca G., Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends. Materials 2018; 11: 285.
  • 109. Yilmaz M., Yilmaz N.F., Kalkan, M.F., Rheology, crystallinity, and mechanical ınvestigation of ınterlayer adhesion strength by thermal annealing of polyetherimide (PEI/ULTEM 1010) parts produced by 3D printing. Journal of Materials Engineering and Performance 2022; 31(12): 9900-9909.
  • 110. Capel A.J., Rimington R.P., Lewis M.P., Christie S.D., 3D printing for chemical, pharmaceutical and biological applications. Nature Reviews Chemistry 2018; 2: 422-436.
  • 111. Angjellari M., Tamburri E., Montaina L., Natali M., Passeri D., Rossi M., Terranova M.L., Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing. Materials & Design 2017; 119: 12-21.
  • 112. Matijašić G., Gretić M., Vinčić J., Poropat A., Cuculić L., Rahelić T., Design and 3D printing of multi-compartmental PVA capsules for drug delivery. Journal of Drug Delivery Science and Technology 2019; 52: 677-686.
  • 113. Xu X., Zhao J., Wang M., Wang L., Yang J., 3D printed polyvinyl alcohol tablets with multiple release profiles. Scientific Reports 2019; 9(1): 12487.
  • 114. Cotabarren I., Gallo, L., 3D printing of PVA capsular devices for modified drug delivery: design and in vitro dissolution studies. Drug Development and Industrial Pharmacy 2020; 46(9): 1416-1426.
  • 115. Duran C., Subbian V., Giovanetti M.T., Simkins J.R., Beyette Jr F.R., Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyping Journal 2015; 21(5): 528-534.
  • 116. Wei C., Solanki N.G., Vasoya J.M., Shah A.V., Serajuddin A.T., Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release. Journal of Pharmaceutical Sciences 2020; 109(4): 1558-1572.
  • 117. Park S.J., Lee J.E., Lee H.B., Park J., Lee N.K., Son Y., Park S.H., 3D printing of biobased polycarbonate and its potential applications in ecofriendly indoor manufacturing. Additive Manufacturing 2020; 31: 100974.
  • 118. Bahar A., Belhabib S., Guessasma S., Benmahiddine F., Hamami A.E.A., Belarbi R., Mechanical and thermal properties of 3D printed polycarbonate. Energies 2022; 15(10): 3686.
  • 119. Gómez-Gras G., Abad M.D., Pérez, M.A., Mechanical performance of 3D-printed biocompatible polycarbonate for biomechanical applications. Polymers 2021; 13(21): 3669.
  • 120. Kodali D., Umerah C.O., Idrees M.O., Jeelani S., Rangari V.K., Fabrication and characterization of polycarbonate-silica filaments for 3D printing applications. Journal of Composite Materials 2021; 55(30): 4575-4584.
  • 121. Ai J.R., Vogt B.D., Size and print path effects on mechanical properties of material extrusion 3D printed plastics. Progress in Additive Manufacturing 2022; 7(5): 1009-1021.
  • 122. Feng P., Jia J., Peng S., Yang W., Bin S., Shuai C., Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration. Virtual and Physical Prototyping 2020; 15(2): 211-226.
  • 123. Blanco I., Rapisarda M., Portuesi S., Ognibene G., Cicala G., Thermal behavior of PEI/PETG blends for the application in fused deposition modelling (FDM). AIP Conference Proceedings 2018; 1981: 020181.
  • 124. Zander N.E., Gillan M., Burckhard Z., Gardea F., Recycled polypropylene blends as novel 3D printing materials. Additive Manufacturing 2019; 25: 122-130.
  • 125. Kaynak C., Varsavas, S.D., Performance comparison of the 3D-printed and injectionmolded PLA and its elastomer blend and fiber composites. Journal of Thermoplastic Composite Materials 2019; 32(4): 501-520.
  • 126. Spreeman M.E., Stretz H.A., Dadmun M.D., Role of compatibilizer in 3D printing of polymer blends. Additive Manufacturing 2019; 27: 267-277.
  • 127. Liu H., Gong K., Portela A., Cao Z., Dunbar R., Chen Y., Granule-based material extrusion is comparable to filament-based material extrusion in terms of mechanical performances of printed PLA parts: A comprehensive ınvestigation. Additive Manufacturing 2023; 75: 103744.
  • 128. Lay M., Thajudin N.L.N., Hamid Z.A.A., Rusli A., Abdullah M.K., Shuib R.K., Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B: Engineering 2019; 176: 107341.
  • 129. Paganin L.C., Barbosa, G.F., A comparative experimental study of additive manufacturing feasibility faced to injection molding process for polymeric parts. The International Journal of Advanced Manufacturing Technology 2020; 109: 2663-2677.
  • 130. Franchetti M., Kress, C., An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. The International Journal of Advanced Manufacturing Technology 2017; 88: 2573-2579.
  • 131. Sanchez F.A.C., Boudaoud H., Hoppe S., Camargo, M., Polymer recycling in an opensource additive manufacturing context: Mechanical issues. Additive Manufacturing 2017; 17:87-105.
  • 132. Gopinathan J., Noh, I., Recent trends in bioinks for 3D printing. Biomaterials Research 2018; 22: 1-15.
  • 133. Anukiruthika T., Moses J.A., Anandharamakrishnan C., 3D printing of egg yolk and white with rice flour blends. Journal of Food Engineering 2020; 265: 109691.
  • 134. Qahtani M., Wu F., Misra M., Gregori S., Mielewski D.F., Mohanty A.K., Experimental design of sustainable 3D-printed poly (lactic acid)/biobased poly (butylene succinate) blends via fused deposition modeling. ACS Sustainable Chemistry & Engineering 2019; 7(17): 14460-14470. 135. Qiu L., Zhang M., Bhandari B., Chitrakar B., Chang, L., Investigation of 3D printing of apple and edible rose blends as a dysphagia food. Food Hydrocolloids 2023; 135: 108184.
  • 136. Han S.N.M.F., Taha M.M., Mansor M.R., Thermal and melt flow behavıour of kenaf fıbre reınforced acrylonıtrıle butadıene styrene composıtes for fused fılament fabrıcatıon. Defence S&T Technical Bulletin 2019; 12(2): 238-247.
  • 137. Lap M.O., Kanbur Y., Tayfun Ü., The use of mussel shell as a bio-additive for poly (lactic acid) based green composites. Chemistry and Chemical Technology 2021; 15(4): 621- 626.
  • 138. Nasir M.H.M., Taha M.M., Razali N., Ilyas R.A., Knight V.F., Norrrahim M.N.F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials 2022; 15(22): 8082.
  • 139. Torun A.R., Dike A.S., Yıldız E.C., Sağlam İ., Choupani N., Fracture characterization and modeling of Gyroid filled 3D printed PLA structures. Materials Testing 2021; 63(5): 397- 401.
  • 140. da Silva S.P.M., Antunes T., Costa M.E.V., Oliveira J.M., Cork-like filaments for Additive Manufacturing. Additive Manufacturing 2020; 34: 101229.
  • 141. Mogan J., Harun W.S.W., Kadirgama K., Ramasamy D., Foudzi F.M., Sulong A.B., Tarlochan F., Ahmad F., Fused deposition modelling of polymer composite: A progress.Polymers 2023; 15(1): 28.
  • 142. Javaid M., Haleem A., Singh R.P., Suman R., Rab, S., Role of additive manufacturing applications towards environmental sustainability. Advanced Industrial and Engineering Polymer Research 2021; 4(4): 312-322.
  • 143. Şahin O., İlcan H., Ateşli A.T., Kul A., Yıldırım G., Şahmaran, M., Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cement and Concrete Composites 2021; 121: 104088.
  • 144. Romani A., Suriano R., Levi, M., Biomass waste materials through extrusion-based additive manufacturing: A systematic literature review. Journal of Cleaner Production 2022; 386: 135779.
  • 145. Park S., Shou W., Makatura L., Matusik W., Fu K.K., 3D printing of polymer composites: Materials, processes, and applications. Matter 2022; 5(1): 43-76.
  • 146. Altıparmak S.C., Yardley V.A., Shi Z., Lin J., Extrusion-based additive manufacturing technologies: State of the art and future perspectives. Journal of Manufacturing Processes 2022; 83: 607-636.
  • 147. Arif Z.U., Khalid M.Y., Noroozi R., Hossain M., Shi H.H., Tariq A., Ramakrishna S., Umer R., Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences 2023; 18(3): 100812.
  • 148. Li M., Zhou S., Cheng L., Mo F., Chen L., Yu S., Wei J., 3D printed supercapacitor: Techniques, materials, designs, and applications. Advanced Functional Materials 2023; 33(1):2208034.

Polymeric materials used as filaments in additive manufacturing method

Yıl 2023, Cilt: 2 Sayı: 1, 45 - 67, 26.12.2023

Öz

The additive manufacturing (AM) technique, accepted as an intelligent manufacturing system, is widely used to develop complex and efficient parts for various applications. The polymer types preferred as filament material in AM processes are limited in their ability to provide the desired surface, adhesion, and mechanical properties. This study compiled the polymers used in 3D printers and their properties by examining case studies. In addition to the currently used polymeric materials, new-generation polymer composites have been integrated into the AM method, and usage examples in many industrial areas, from medical to building materials, have been diversified and shared. The production of unique polymeric materials to be used as filament material has the potential to accelerate the technological development of AM processes, which are being developed with innovative applications daily and are foreseen as the future manufacturing technology.

Kaynakça

  • 1. Jadhav A., Jadhav V.S., A review on 3D printing: An additive manufacturing technology, Materials Today: Proceedings 2022; 62(4): 2094-2099.
  • 2. Jiang J., Lou J., Hu G., Effect of support on printed properties in fused deposition modelling processes, Virtual and Physical Prototyping 2019; 14(4): 308-315.
  • 3. Gibson I., Rosen D., Stucker B., Khorasani M., Chapter 1-Introduction and Basic Principles, Additive Manufacturing Technologies; 2020: 1-21.
  • 4. Gaoa W., Zhang Y., Ramanujana D., Ramani K., Chenc Y., Williams C.B., Charlie Wang, C.C.L., Shina, Y.C., Zhang, S., Zavattieri, P.D., The status, challenges, and future of additive manufacturing in engineering, Computer-Aided Design 2015; 69: 65-89.
  • 5. Pereiraa T., Kennedyb J.V., Potgieter J., A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manufacturing 2019; 30: 11-18.
  • 6. Bozkurt Y., Gülsoy H., Karayel E., Eklemeli imalat teknolojilerinin tıbbi ekipmanların üretiminde kullanımı, El-Cezeri 2021; 8(2): 962-980.
  • 7. Erener Ş., Boz S., Modern üretim tekniklerinde eklemeli imalat sistemlerinin yeri ve kullanım alanları, Turkish Journal of Fashion Design and Management 2021; 3(1): 47-56.
  • 8. Jasiuk I., Abueidda D.W., Kozuch C., Pang S., Su F.Y., McKittrick, J., An overview on additive manufacturing of polymers, Journal of The Minerals, Metals & Materials Society 2018; 70: 275-283.
  • 9. Ligon S.C., Liska R., Stampfl J., Gurr M., Mulhaupt R., Polymers for 3D printing and customized additive manufacturing, Chemical Reviews 2017; 117(15): 10212.
  • 10. Leon A.C., Chen Q., Palaganas N.B., Palaganas J.O., Manapat J., Advincula R.C., High performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers 2016; 103: 141-155.
  • 11. Wang X., Jiang M., Zhou Z., Gou J., Hui D., 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017; 110: 442-458.
  • 12. Saroia J., Wang Y., Wei Q., Lei M., Li X., Guo Y., Zhang K., A review on 3D printed matrix polymer composites: its potential and future challenges. The International Journal of Advanced Manufacturing Technology 2019; 106(5-6): 1695-1721.
  • 13. Singh B., Kumar R., Singh J.C., Polymer matrix composites in 3D printing: A state of art review. Materials Today: Proceedings 2020; 33: 1562-1567.
  • 14. Bekas D.G., Hou Y., Liu Y., Panesar A., 3D printing to enable multifunctionality in polymer-based composites: A review. Composites Part B: Engineering 2019; 179: 107540.
  • 15. Jin M., Neuber C., Schmidt H.W., Tailoring polypropylene for extrusion-based additive manufacturing. Additive Manufacturing 2020; 33: 101101.
  • 16. González-Henríquez C.M., Sarabia-Vallejos M.A., Rodriguez-Hernandez J., Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science 2019; 94: 57-116.
  • 17. Spoerk M., Holzer C., Gonzalez-Gutierrez J., Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science 2020; 137(12): 48545.
  • 18. Verma N., Awasthi P., Gupta A., Banerjee S.S., Fused deposition modeling of polyolefins: Challenges and opportunities. Macromolecular Materials and Engineering. 2023; 308(1): 2200421.
  • 19. Zaldivar R.J., Mclouth T.D., Ferrelli G.L., Patel D.N., Hopkins A.R., Witkin D., Effect of initial filament moisture content on the microstructure and mechanical performance of ULTEM 9085 3D printed parts, Additive Manufacturing 2018; 24: 457-466.
  • 20. Kim E., Shin Y.J., Ahn S.H., The effects of moisture and temperature on the mechanical properties of additive manufacturing components: Fused deposition modeling. Rapid Prototyping Journal 2016; 22: 887-89.
  • 21. Auras R., Harte B., Selke S., An overview of polylactides as packaging materials. Macromolecular Bioscience 2004; 4(9): 835-864.
  • 22. Bajpai P.K., Singh I., Madaan J., Development and characterization of PLA-based green composites:A review. Journal of Thermoplastic Composite Materials 2014; 27(1): 52-81.
  • 23. Nagarajan V., Mohanty A.K., Misra M., Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering 2016; 4(6): 2899-2916.
  • 24. Rasal R.M., Janorkar A.V., Hirt D.E., Poly (lactic acid) modifications. Progress in Polymer Science 2010; 35(3): 338-356.
  • 25. Cisneros-López E.O., Pal A.K., Rodriguez A.U., Wu F., Misra M., Mielewski D.F., Kiziltas A., Mohanty A.K., Recycled poly (lactic acid)–based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability 2020; 7: 100027.
  • 26. Ilyas R., Zuhri M.Y.M., Aisyah H.A., Asyraf M.R.M., Hassan S.A., Zainudin E.S., Sapuan S.M., Sharma S., Bangar S.P., Jumaidin R., Nawab Y., Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 2022; 14(1): 202.
  • 27. Murariu M., Dubois P., PLA composites: From production to properties. Advanced drug delivery reviews 2016; 107: 17-46.
  • 28. Siakeng R., Jawaid M., Ariffin H., Sapuan S.M., Asim M., Saba N., Natural fiber reinforced polylactic acid composites: A review. Polymer Composites 2019; 40(2): 446-463.
  • 29. Ahmad F., Choi H.S., Park M.K., A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering 2015; 300(1): 10-24.
  • 30. Akampumuza O., Wambua P.M., Ahmed A., Li W., Qin X.H., Review of the applications of biocomposites in the automotive industry. Polymer Composites 2017; 38(11): 2553-2569.
  • 31. Chauhan V., Kärki T., Varis J., Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials 2022; 35(8): 1169-1209.
  • 32. Musa L., Kumar N. K., Abd Rahim S.Z., Rasidi M.S.M., Rennie A.E.W., Rahman R., Azmi A.A., A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. Journal of Materials Research and Technology 2022; 20: 2841-2858.
  • 33. Nasir M.H.M., Taha M.M., Razali N., Ilyas R.A., Knight V.F., Norrrahim M.N.F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials 2022; 15(22): 8082.
  • 34. Sang L., Han S., Li Z., Yang X., Hou W., Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering 2019; 164: 629-639.
  • 35. Tayfun Ü., Arslan Ç., Doğan M., Bazalt elyaf yüzeyindeki silan katmanının polilaktit kompozitlerine güçlendirme etkinliğinin değerlendirilmesi. Journal of Materials and Mechatronics: A 2023; 4(1): 87-99.
  • 36. Odera R.S., Idumah C.I., Novel advancements in additive manufacturing of PLA: A review. Polymer Engineering & Science 2023; DOI: 10.1002/pen.26450.
  • 37. Tsou C.H., Yao W.H., Wu C.S., Tsou C.Y., Hung W.S., Chen J.C., Guo J., Yuan S., Wen E., Wang R.Y., Suen M.C., Preparation and characterization of renewable composites from Polylactide and Rice husk for 3D printing applications. Journal of Polymer Research 2019; 26: 227.
  • 38. Lee D., Wu G.Y., Parameters affecting the mechanical properties of three-dimensional (3D) printed carbon fiber-reinforced polylactide composites. Polymers 2020; 12(11): 2456.
  • 39. Moetazedian A., Gleadall A., Han X., Ekinci A., Mele E., Silberschmidt V.V., Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing 2021; 38: 101764.
  • 40. Singamneni S., Behera M.P., Truong D., Le Guen M.J., Macrae E., Pickering K., Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form. Journal of Materials Research and Technology 2021; 15: 936-949.
  • 41. Olam M., Tosun N., 3D-printed polylactide/hydroxyapatite/titania composite filaments. Materials Chemistry and Physics 2022; 276: 125267.
  • 42. Yang J., Li W., Mu B., Xu H., Hou X., Yang Y., Simultaneous toughness and stiffness of 3D printed nano-reinforced polylactide matrix with complete stereo-complexation via hierarchical crystallinity and reactivity. International Journal of Biological Macromolecules 2022; 202: 482-493.
  • 43. Thomas S., Datta J., Haponiuk J.T., Reghunadhan A., Polyurethane Polymers: Composites and Nanocomposites, Elsevier, Amsterdam, 2017.
  • 44. Atiqah A., Mastura M.T., Ali B. A.A., Jawaid M., Sapuan S.M., A review on polyurethane and its polymer composites. Current Organic Synthesis 2017; 14(2); 233-248.
  • 45. Engels H.W., Pirkl H.G., Albers R., Albach R.W., Krause J., Hoffmann A., Casselmann H., Dormish J., Polyurethanes: Versatile materials and sustainable problem solvers for today's challenges. Angewandte Chemie 2013; 52(36): 9422-9441.
  • 46. Das A., Mahanwar P., A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research 2020; 3(3): 93-101.
  • 47. Desai S.M., Sonawane R. Y., More A.P., Thermoplastic polyurethane for threedimensional printing applications: A review. Polymers for Advanced Technologies 2023; 34(7): 2061-2082.
  • 48. Rodríguez-Parada L., de la Rosa S., Mayuet P.F., Influence of 3D-printed TPU properties for the design of elastic products. Polymers 2021; 13(15): 2519.
  • 49. Kechagias J.D., Vidakis N., Petousis M., Parameter effects and process modeling of FFF-TPU mechanical response. Materials and Manufacturing Processes 2023; 38(3): 341-351.
  • 50. Xiao J., Gao Y., The manufacture of 3D printing of medical grade TPU. Progress in Additive Manufacturing 2017; 2: 117-123.
  • 51. Shin E.J., Park Y., Jung Y.S., Choi H.Y., Lee S., Fabrication and characteristics of flexible thermoplastic polyurethane filament for fused deposition modeling three‐dimensional printing. Polymer Engineering & Science 2022; 62(9): 2947-2957.
  • 52. Nace S.E., Tiernan J., Holland D., Ni Annaidh A., A comparative analysis of the compression characteristics of a thermoplastic polyurethane 3D printed in four infill patterns for comfort applications. Rapid Prototyping Journal 2021; 27(11): 24-36.
  • 53. Kaynak, C., Varsavas S.D., Performance comparison of the 3D-printed and injectionmolded PLA and its elastomer blend and fiber composites. Journal of Thermoplastic Composite Materials 2018; 32(4): 501-520.
  • 54. Wang F., Ji Y., Chen C., Zhang G., Chen Z., Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane. Journal of Polymer Research 2022; 29(8): 320.
  • 55. Gama N., Ferreira A., Barros-Timmons A., 3D printed thermoplastic polyurethane filled with polyurethane foams residues. Journal of Polymer and Environment 2020; 28: 1560-1570.
  • 56. Hohimer C., Christ J., Aliheidari N., Mo C., Ameli A., 3D printed thermoplastic polyurethane with isotropic material properties. Behavior and Mechanics of Multifunctional Materials and Composites 2017; 10165, 213-221.
  • 57. Lin X., Hao M., Ying J., Wang R., Lu Y., Gong M., Zhang L., Wang D., Zhang L., An insight into the tensile anisotropy of 3D-printed thermoplastic polyurethane. Additive Manufacturing 2022; 60: 103260.
  • 58. Moore J.D., Acrylonitrile-butadiene-styrene (ABS)-a review. Composites 1973; 4 (3): 118-130.
  • 59. Krache R., Debbah I., Some Mechanical and thermal properties of PC/ABS blends. Materials Sciences and Applications 2011; 2: 404-410.
  • 60. Kulshreshtha A.K., A review of commercial polyblends based on PVC, ABS, and PC. Polymer-Plastics Technology and Engineering 1993; 32(6): 551-578.
  • 61. Kim H., Woo S.S., Recent Developments and Perspectives in ABS Resin. Polymers and Other Advanced Materials: Emerging Technologies and Business Opportunities 1995;185-188.
  • 62. Cirmad H., Tirkes S., Tayfun U., Evaluation of flammability, thermal stability and mechanical behavior of expandable graphite-reinforced acrylonitrile–butadiene–styrene terpolymer. Journal of Thermal Analysis and Calorimetry 2022; 147: 2229-2237.
  • 63. Arslan C., Dogan M., Effect of fiber amount on mechanical and thermal properties of (3-aminopropyl) triethoxysilane treated basalt fiber reinforced ABS composites. Materials Research Express 2019; 6(11): 115340.
  • 64. Olivera S., Muralidhara H.B., Venkatesh K., Gopalakrishna K., Vivek C.S., Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review. Journal of Materials Science 2016; 51: 3657-3674.
  • 65. Rodríguez J.F., Thomas J.P., Renaud J.E., Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials experimental investigation. Rapid Prototyping Journal 2011; 7(3): 148-158.
  • 66. Vicente C.M., Martins T.S., Leite M., Ribeiro A., Reis L., Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polymers for Advenced Technologies 2020; 31(3): 501-507.
  • 67. Rashid A.A., Koç M., Fused filament fabrication process: A review of numerical simulation techniques. Polymers 2021; 13(20): 3534.
  • 68. Olivera S., Muralidhara H.B., Venkatesh K., Gopalakrishna K., Vivek C.S., Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review. Journal of Materials Science 2016; 51: 3657-3674.
  • 69. Karabeyoglu S.S., Eksi O., Yaman P., Kucukyildirim B.O., Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts. Journal of Polymer Engineering 2021; 41(10): 854-862.
  • 70. Shubham P., Sikidar A., Chand T., The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling. Key Engineering Materials 2016; 706: 63-67.
  • 71. Alhallak L.M., Tirkes S, Tayfun U., Mechanical, thermal, melt-flow and morphological characterizations of bentonite-filled ABS copolymer. Rapid Prototyping Journal 2020; 26(7): 1305-1312.
  • 72. Bodaghi M., Sadooghi A., Bakhshi M., Hashemi S.J., Rahmani K., Keshavarz Motamedi M., Glass fiber reinforced acrylonitrile butadiene styrene composite gears by FDM 3D printing. Advanced Materials Interfaces 2023; 2300337. DOI: 10.1002/admi.202300337
  • 73. Arslan C., Dogan M., The effects of fiber silane modification on the mechanical performance of chopped basalt fiber/ABS composites. Journal of Thermoplastic Composite Materials 2020; 33(11): 1449-1465.
  • 74. Tandon S., Kacker R., Singh S.K., Correlations on average tensile strength of 3dprinted acrylonitrile butadiene styrene, polylactic acid, and polylactic acid+ carbon fiber specimens. Advanced Engineering Materials 2023; 25(9): 2201413.
  • 75. Akar A.O., Yildiz U.H., Tirkes S., Tayfun U., Hacivelioglu F., Influence of carbon nanotube inclusions to electrical, thermal, physical and mechanical behaviors of carbon-fiberreinforced ABS composites. Carbon Letters 2022; 32(4): 987-998.
  • 76. Alghadi A.M., Tirkes S., Tayfun, U., Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral. Materials Research Express 2019; 7(1): 015301.
  • 77. Tayfun Ü., Tirkeş S., Doğan M., Tirkeş S., Zahmakıran M., Comparative performance study of acidic pumice and basic pumice ınclusions for acrylonitrile–butadiene–styrene-based composite filaments. 3D Printing and Additive Manufacturing 2022; DOI: 10.1089/3dp.2022.0228
  • 78. Kechagias J.D., Fountas N.A., Ninikas K., Petousis M., Vidakis N., Vaxevanidis N., Surface characteristics investigation of 3D-printed PET-G plates during CO2 laser cutting. Materials and Manufacturing Processes 2022; 37(11): 1347-1357.
  • 79. Soleyman E., Aberoumand M., Rahmatabadi D., Soltanmohammadi K., Ghasemi I., Baniassadi M., Abrinia K., Baghani M., Assessment of controllable shape transformation, potential applications, and tensile shape memory properties of 3D printed PETG. Journal of Materials Research and Technology 2022; 18: 4201-4215.
  • 80. Bhandari S., Lopez-Anido R.A., Gardner, D.J., Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Additive Manufacturing 2019; 30: 100922.
  • 81. Alarifi I.M., PETG/carbon fiber composites with different structures produced by 3D printing. Polymer Testing 2023; 120: 107949.
  • 82. Kasmi S., Ginoux G., Allaoui S., Alix, S., Investigation of 3D printing strategy on the mechanical performance of coextruded continuous carbon fiber reinforced PETG. Journal of Applied Polymer Science 2021; 138(37): 50955.
  • 83. Alarifi I.M., Mechanical properties and numerical simulation of FDM 3D printed PETG/carbon composite unit structures. Journal of Materials Research and Technology 2023; 23: 656-669.
  • 84. Kannan S., Ramamoorthy M., Sudhagar E., Gunji B., Mechanical characterization and vibrational analysis of 3D printed PETG and PETG reinforced with short carbon fiber. AIP Conference Proceedings 2020; 2270(1): 030004.
  • 85. Valvez S., Silva A.P., Reis P.N., Compressive behaviour of 3D-printed PETG composites. Aerospace 2022; 9(3): 124.
  • 86. Balou S., Ahmed I., Priye A., From waste to filament: Development of biomassderived activated carbon-reinforced PETG composites for sustainable 3D printing. ACS Sustainable Chemistry & Engineering 2023; 11(34): 12667-12676.
  • 87. Veselý P., Froš D., Hudec T., Sedláček J., Ctibor P., Dušek, K., Dielectric spectroscopy of PETG/TiO2 composite intended for 3D printing. Virtual and Physical Prototyping 2023; 18(1): e2170253.
  • 88. Kim H., Ryu K.H., Baek D., Khan T.A., Kim H.J., Shin S., Hyun J., Ahn J.S., Ahn S.J., Kim H.J., Koo J., 3D printing of polyethylene terephthalate glycol–sepiolite composites with nanoscale orientation. ACS Applied Materials & Interfaces 2020; 12(20): 23453-23463.
  • 89. Vijayasankar K.N., Bonthu D., Doddamani M., Pati F., Additive manufacturing of short silk fiber reinforced PETG composites. Materials Today Communications 2022; 33: 104772.
  • 90. Mahesh V., George J.P., Mahesh V., Chakraborthy H., Mukunda S., Ponnusami S.A., Dry-sliding wear properties of 3D printed PETG/SCF/OMMT nanocomposites: Experimentation and model predictions using artificial neural network. Journal of Reinforced Plastics and Composites 2023; DOI: 10.1177/073168442311888.
  • 91. Mahesh V., Joseph A.S., Mahesh V., Harursampath D., VN C., Investigation on the mechanical properties of additively manufactured PETG composites reinforced with OMMT nanoclay and carbon fibers. Polymer Composites 2021; 42(5): 2380-2395.
  • 92. Calignano F., Lorusso M., Roppolo I., Minetola P., Investigation of the mechanical properties of a carbon fibre-reinforced nylon filament for 3D printing. Machines 2020; 8: 52.
  • 93. Singh R., Singh J., Singh, S., Investigation for dimensional accuracy of AMC prepared by FDM assisted investment casting using nylon-6 waste based reinforced filament. Measurement 2016; 78: 253-259.
  • 94. Farina I., Singh N., Colangelo F., Luciano R., Bonazzi G., Fraternali F., Highperformance nylon-6 sustainable filaments for additive manufacturing. Materials 2019; 12: 3955.
  • 95. Aslanzadeh S., Saghlatoon H., Honari M.M., Mirzavand R., Montemagno C., Mousavi P., Investigation on electrical and mechanical properties of 3D printed nylon 6 for RF/microwave electronics applications. Additive Manufacturing 2018; 21: 69-75.
  • 96. Wang P., Zou B., Xiao H.C., Ding S.L., Huang C.Z., Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. Journal of Materials Processing Technology 2019; 271: 62-74.
  • 97. Dua R., Rashad Z., Spears J., Dunn G., Maxwell M., Applications of 3d-printed peek via fused filament fabrication: A systematic review. Polymers 2021; 13(22): 4046.
  • 98. Liu Z., Wang G., Huo Y., Zhao W., Research on precise control of 3D print nozzle temperature in PEEK material. AIP Conference Proccedings 2017; 1890: 040076.
  • 99. Kang J., Zhang J., Zheng J., Wang L., Li D., Liu S., 3D-printed PEEK implant for mandibular defects repair-a new method. Journal of the Mechanical Behavior of Biomedical Materials 2021; 116: 104335.
  • 100. Rinaldi M., Cecchini F., Pigliaru L., Ghidini T., Lumaca F., Nanni F., Additive manufacturing of polyether ether ketone (PEEK) for space applications: A nanosat polymeric structure. Polymers 2021; 13: 11.
  • 101. Wickramasinghe S., Do T., Tran P., FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers 2020; 12: 1529.
  • 102. Rodzeń K., Harkin-Jones E., Wegrzyn M., Sharma P.K., Zhigunov A., Improvement of the layer-layer adhesion in FFF 3D printed PEEK/carbon fibre composites. Composites Part A: Applied Science and Manufacturing 2021; 149: 106532.
  • 103. Stepashkin А.А., Chukov D.I., Senatov F.S., Salimon A.I., Korsunsky A.M., Kaloshkin S.D., 3D-printed PEEK-carbon fiber (CF) composites: Structure and thermal properties. Composites Science and Technology 2018; 164: 319-326.
  • 104. Gómez-García D., Díaz-Álvarez A., Youssef G., Miguélez H., Díaz-Álvarez J., Machinability of 3D printed peek reinforced with short carbon fiber. Composites Part C 2023; 100387.
  • 105. Han X., Yang D., Yang C., Spintzyk S., Scheideler L., Li P., Li D., Geis-Gerstorfer J. and Rupp F., Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. Journal of Clinical Medicine 2019; 8(2): 240.
  • 106. Blanco I., Rapisarda M., Portuesi S., Ognibene G., Cicala G., Thermal behavior of PEI/PETG blends for the application in fused deposition modelling (FDM). AIP Conference Proceedings 2018; 1981: 020181.
  • 107. El Magri A., Vanaei S., Vaudreuil S., An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Performance Polymers 2021; 33(8): 862-880.
  • 108. Cicala G., Ognibene G., Portuesi S., Blanco I., Rapisarda M., Pergolizzi E., Recca G., Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends. Materials 2018; 11: 285.
  • 109. Yilmaz M., Yilmaz N.F., Kalkan, M.F., Rheology, crystallinity, and mechanical ınvestigation of ınterlayer adhesion strength by thermal annealing of polyetherimide (PEI/ULTEM 1010) parts produced by 3D printing. Journal of Materials Engineering and Performance 2022; 31(12): 9900-9909.
  • 110. Capel A.J., Rimington R.P., Lewis M.P., Christie S.D., 3D printing for chemical, pharmaceutical and biological applications. Nature Reviews Chemistry 2018; 2: 422-436.
  • 111. Angjellari M., Tamburri E., Montaina L., Natali M., Passeri D., Rossi M., Terranova M.L., Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing. Materials & Design 2017; 119: 12-21.
  • 112. Matijašić G., Gretić M., Vinčić J., Poropat A., Cuculić L., Rahelić T., Design and 3D printing of multi-compartmental PVA capsules for drug delivery. Journal of Drug Delivery Science and Technology 2019; 52: 677-686.
  • 113. Xu X., Zhao J., Wang M., Wang L., Yang J., 3D printed polyvinyl alcohol tablets with multiple release profiles. Scientific Reports 2019; 9(1): 12487.
  • 114. Cotabarren I., Gallo, L., 3D printing of PVA capsular devices for modified drug delivery: design and in vitro dissolution studies. Drug Development and Industrial Pharmacy 2020; 46(9): 1416-1426.
  • 115. Duran C., Subbian V., Giovanetti M.T., Simkins J.R., Beyette Jr F.R., Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyping Journal 2015; 21(5): 528-534.
  • 116. Wei C., Solanki N.G., Vasoya J.M., Shah A.V., Serajuddin A.T., Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release. Journal of Pharmaceutical Sciences 2020; 109(4): 1558-1572.
  • 117. Park S.J., Lee J.E., Lee H.B., Park J., Lee N.K., Son Y., Park S.H., 3D printing of biobased polycarbonate and its potential applications in ecofriendly indoor manufacturing. Additive Manufacturing 2020; 31: 100974.
  • 118. Bahar A., Belhabib S., Guessasma S., Benmahiddine F., Hamami A.E.A., Belarbi R., Mechanical and thermal properties of 3D printed polycarbonate. Energies 2022; 15(10): 3686.
  • 119. Gómez-Gras G., Abad M.D., Pérez, M.A., Mechanical performance of 3D-printed biocompatible polycarbonate for biomechanical applications. Polymers 2021; 13(21): 3669.
  • 120. Kodali D., Umerah C.O., Idrees M.O., Jeelani S., Rangari V.K., Fabrication and characterization of polycarbonate-silica filaments for 3D printing applications. Journal of Composite Materials 2021; 55(30): 4575-4584.
  • 121. Ai J.R., Vogt B.D., Size and print path effects on mechanical properties of material extrusion 3D printed plastics. Progress in Additive Manufacturing 2022; 7(5): 1009-1021.
  • 122. Feng P., Jia J., Peng S., Yang W., Bin S., Shuai C., Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration. Virtual and Physical Prototyping 2020; 15(2): 211-226.
  • 123. Blanco I., Rapisarda M., Portuesi S., Ognibene G., Cicala G., Thermal behavior of PEI/PETG blends for the application in fused deposition modelling (FDM). AIP Conference Proceedings 2018; 1981: 020181.
  • 124. Zander N.E., Gillan M., Burckhard Z., Gardea F., Recycled polypropylene blends as novel 3D printing materials. Additive Manufacturing 2019; 25: 122-130.
  • 125. Kaynak C., Varsavas, S.D., Performance comparison of the 3D-printed and injectionmolded PLA and its elastomer blend and fiber composites. Journal of Thermoplastic Composite Materials 2019; 32(4): 501-520.
  • 126. Spreeman M.E., Stretz H.A., Dadmun M.D., Role of compatibilizer in 3D printing of polymer blends. Additive Manufacturing 2019; 27: 267-277.
  • 127. Liu H., Gong K., Portela A., Cao Z., Dunbar R., Chen Y., Granule-based material extrusion is comparable to filament-based material extrusion in terms of mechanical performances of printed PLA parts: A comprehensive ınvestigation. Additive Manufacturing 2023; 75: 103744.
  • 128. Lay M., Thajudin N.L.N., Hamid Z.A.A., Rusli A., Abdullah M.K., Shuib R.K., Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B: Engineering 2019; 176: 107341.
  • 129. Paganin L.C., Barbosa, G.F., A comparative experimental study of additive manufacturing feasibility faced to injection molding process for polymeric parts. The International Journal of Advanced Manufacturing Technology 2020; 109: 2663-2677.
  • 130. Franchetti M., Kress, C., An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. The International Journal of Advanced Manufacturing Technology 2017; 88: 2573-2579.
  • 131. Sanchez F.A.C., Boudaoud H., Hoppe S., Camargo, M., Polymer recycling in an opensource additive manufacturing context: Mechanical issues. Additive Manufacturing 2017; 17:87-105.
  • 132. Gopinathan J., Noh, I., Recent trends in bioinks for 3D printing. Biomaterials Research 2018; 22: 1-15.
  • 133. Anukiruthika T., Moses J.A., Anandharamakrishnan C., 3D printing of egg yolk and white with rice flour blends. Journal of Food Engineering 2020; 265: 109691.
  • 134. Qahtani M., Wu F., Misra M., Gregori S., Mielewski D.F., Mohanty A.K., Experimental design of sustainable 3D-printed poly (lactic acid)/biobased poly (butylene succinate) blends via fused deposition modeling. ACS Sustainable Chemistry & Engineering 2019; 7(17): 14460-14470. 135. Qiu L., Zhang M., Bhandari B., Chitrakar B., Chang, L., Investigation of 3D printing of apple and edible rose blends as a dysphagia food. Food Hydrocolloids 2023; 135: 108184.
  • 136. Han S.N.M.F., Taha M.M., Mansor M.R., Thermal and melt flow behavıour of kenaf fıbre reınforced acrylonıtrıle butadıene styrene composıtes for fused fılament fabrıcatıon. Defence S&T Technical Bulletin 2019; 12(2): 238-247.
  • 137. Lap M.O., Kanbur Y., Tayfun Ü., The use of mussel shell as a bio-additive for poly (lactic acid) based green composites. Chemistry and Chemical Technology 2021; 15(4): 621- 626.
  • 138. Nasir M.H.M., Taha M.M., Razali N., Ilyas R.A., Knight V.F., Norrrahim M.N.F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing. Materials 2022; 15(22): 8082.
  • 139. Torun A.R., Dike A.S., Yıldız E.C., Sağlam İ., Choupani N., Fracture characterization and modeling of Gyroid filled 3D printed PLA structures. Materials Testing 2021; 63(5): 397- 401.
  • 140. da Silva S.P.M., Antunes T., Costa M.E.V., Oliveira J.M., Cork-like filaments for Additive Manufacturing. Additive Manufacturing 2020; 34: 101229.
  • 141. Mogan J., Harun W.S.W., Kadirgama K., Ramasamy D., Foudzi F.M., Sulong A.B., Tarlochan F., Ahmad F., Fused deposition modelling of polymer composite: A progress.Polymers 2023; 15(1): 28.
  • 142. Javaid M., Haleem A., Singh R.P., Suman R., Rab, S., Role of additive manufacturing applications towards environmental sustainability. Advanced Industrial and Engineering Polymer Research 2021; 4(4): 312-322.
  • 143. Şahin O., İlcan H., Ateşli A.T., Kul A., Yıldırım G., Şahmaran, M., Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cement and Concrete Composites 2021; 121: 104088.
  • 144. Romani A., Suriano R., Levi, M., Biomass waste materials through extrusion-based additive manufacturing: A systematic literature review. Journal of Cleaner Production 2022; 386: 135779.
  • 145. Park S., Shou W., Makatura L., Matusik W., Fu K.K., 3D printing of polymer composites: Materials, processes, and applications. Matter 2022; 5(1): 43-76.
  • 146. Altıparmak S.C., Yardley V.A., Shi Z., Lin J., Extrusion-based additive manufacturing technologies: State of the art and future perspectives. Journal of Manufacturing Processes 2022; 83: 607-636.
  • 147. Arif Z.U., Khalid M.Y., Noroozi R., Hossain M., Shi H.H., Tariq A., Ramakrishna S., Umer R., Additive manufacturing of sustainable biomaterials for biomedical applications. Asian Journal of Pharmaceutical Sciences 2023; 18(3): 100812.
  • 148. Li M., Zhou S., Cheng L., Mo F., Chen L., Yu S., Wei J., 3D printed supercapacitor: Techniques, materials, designs, and applications. Advanced Functional Materials 2023; 33(1):2208034.
Toplam 147 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İmalat Süreçleri ve Teknolojileri, Katmanlı Üretim, Yeni Ürün Geliştirme
Bölüm Makaleler
Yazarlar

Ümit Tayfun 0000-0001-5978-5162

Volkan Murat Yılmaz 0000-0001-8203-2900

Çağrıalp Arslan 0000-0002-5993-2983

Yayımlanma Tarihi 26 Aralık 2023
Gönderilme Tarihi 1 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 2 Sayı: 1

Kaynak Göster

IEEE Ü. Tayfun, V. M. Yılmaz, ve Ç. Arslan, “Eklemeli imalat yönteminde filament olarak kullanılan polimerik malzemeler”, JOSS, c. 2, sy. 1, ss. 45–67, 2023.