Dactylorhiza urvilleana Rizosferinden İzole Edilen Bacillus Türlerinin Biyoremediasyon Potansiyellerinin ve Bitki Büyümesini Destekleyici Özelliklerinin Belirlenmesi
Yıl 2023,
, 948 - 958, 25.12.2023
Ülkü Zeynep Üreyen Esertaş
,
Arif Bozdeveci
,
Emel Uzunalioğlu
,
Şengül Alpay Karaoğlu
Öz
Sanayi faaliyetleri onlarca yıldır doğal kaynakları etkileyerek çevresel tahribatın en büyük etkenlerinin başında gelmektedir. Özellikle biyosfer için en büyük tehlikelerden biri olan ağır metaller sanayi atığının içeriğinde bulunabilmektedir. Endüstriyel atık sular yoluyla tarım alanlarına giren ağır metaller, belirli bir süre sonra ağır metallerin toprakta birikmesine neden olmaktadır. Biriken bu ağır metaller, toksik özellikleri nedeniyle canlıların yaşamını tehdit eden önemli bir çevre sorununa dönüşmektedir. Ağır metaller içeren atık sularla kirlenmiş topraklarda mikroorganizma popülasyonları hem sayı hem de çeşitlilik açısından ciddi zarar görmektedir. Suda ve toprakta meydana gelen bu ağır metal birikimi evrensel boyutlara ulaşan bir sağlık tehdidi haline gelmiştir. Ağır metal kirliliği ile mücadelede alternatif süreçlere ihtiyaç duyulmaktadır. Mikroorganizmalar ve bitkiler aracılığı ile çevresel kirleticilerin giderim süreci olarak tanımlanan biyoremidasyon faaliyeti son yıllarda büyük önem kazanmıştır. Çalışmamızda Rize ili Ovit yaylasındaki Dactylorhiza urvilleana (Steudel) Bauman rizosferinden izole edilen Bacillus türlerinin bakır, kurşun, çinko, demir, gümüş gibi metallere olan tolerans potansiyelleri araştırıldı. Ayrıca bitki gelişimini teşvik edici İndol Asetik Asit (IAA) üretimi, fosfat çözündürme, ACC (1-Aminosiklopropan-1-Karboksilat) deminaz üretimi gibi özellikleri belirlendi. İzole edilen tüm Bacillus türlerinin geniş bir pH üreme aralığına sahip olduğu ve bazı Bacillus türlerinin tuz toleransına sahip olduğu belirlendi. Sonuçlar, Bacillus türlerinin biyoremediasyon potansiyeline ve bitki büyümesini teşvik edici özelliklere sahip olduğunu göstermiştir. Çalışmadan izole edilen bakterilerin ağır metal kirliliği olan alanların bitki yetiştiriciliğine uygun hale getirilmesinde kullanılabileceği ve bu alanlarda bitki gelişimini destekleyici olarak görev yapabileceği düşünülmektedir. Bu bakteri suşlarının tarımda veya ağır metal kirliliği olan bölgelerde yapılacak çalışmalarda daha ucuz ve daha etkili yöntemler olarak kullanılması planlanmaktadır.
Proje Numarası
RTEU-2015.53002.102.03.01
Kaynakça
- Alexander, D. B. and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12: 39–45.
- Ambrosini, A., de Souza, R. and Passaglia, L. M. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil, 400: 193–207.
- Aydoğan, M. N., Algur, Ö. M. and Özdemir, M. (2013). Isolation and characterization of some bacteria and microfungus solving tricalcium phosphate. Journal of ADYUTAYAM 1: 11–20.
- Brígido, C., Duan, J. and Glick, B. R. (2015). Methods to Study 1 Aminocyclopropane-1-carboxylate (ACC) Deaminase in Plant Growth-Promoting Bacteria. In Handbook for Azospirillum; Springer: Berlin/Heidelberg, Germany, 2015: 287–305.
- Bruins, M. R., Kapil, S. and Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety 45(3): 198–207.
- Cappuccino, J. G. and Sherman, N. (1996) Microbiology a Laboratory Manual. The Benjamin Cummings Publishing Co. Inc., San Francisco.
- Casacuberta, E. and González, J. (2013). The impact of transposable elements in environmental adaptation. Molecular Ecology, 22: 1503–1517.
- Chen, C., Wang, M., Zhu, J., Tang, Y., Zhang, H., Zhao, Q., et al. (2022). Long-term effect of epigenetic modification in plant–microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. Microbiome, 10: 1–19.
- Chen, X., Liu, X., Zhang, X., Cao, L. and Hu, X. (2017). Phytoremediation effect of Scirpus triqueter inoculated plant growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Journal of hazardous Materials, 325: 319–326.
- Clavé, G., Garoux, L., Boulanger, C., Hesemann, P. and Grison, C. (2016) Ecological recycling of a bio-based catalyst for Cu click reaction: a new strategy for a greener sustainable catalysis. Chemistryselect, 1:1410–1416.
- Cornu, J. Y., Elhabiri, M., Ferret, C., Geoffroy, V. A., Jézéquel, K., Leva, Y., Lollier, M., Schalk, I. J. and Lebeau, T. (2014) Contrasting effects of pyoverdine on the phytoextraction of Cu and Cd in a calcareous soil. Chemosphere, 103:212–219.
- Duman, Y., Yüzügüllü, Y. K., Sertel, A. and Polat, F. (2016). Production, purification and characterization of a thermo-alkali stable and metal-tolerant carboxymethylcellulase from newly isolated Bacillus methylotrophicus Y37. Turkish Journal of Chemistry, 40(5): 802-15.
- Dworken, M. and Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of bacteriology, 75: 592–601.
- Fürnkranz, M., Müller, H. and Berg, G. (2009). Characterization of plant growth promoting bacteria from crops in Bolivia. Journal of plant diseases and protection, 116(4): 149–155.
- Gordon, A. S. and Weber, R. P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiology, 26:192–195.
- Grison, C. (2015). Combining phytoextraction and ecocatalysis: a novel concept for greener chemistry, an opportunity for remediation. Environmental Science and Pollution Research, 22:5589–5591.
- Güldoğan, Ö., Pınar Aktepe, B. and Aysan, Y. (2022). Use of Different Bacillus Species in the Biological Control of Tomato Bacterial Speck Disease. Journal of Tekirdag Agricultural Faculty, 19(4): 829-839.
- Gururani, M., Upadhyaya, C., Baskar, V., Venkatesh, J., Nookaraju, A. and Park, S. (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. Journal Plant Growth Regulation, 32(2):245–258.
- Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T. and Williams, S. T. (1994). Bergey's Manual of Determinative Bacteriology (9th ed.), Baltimor: Williams & Wilkins, Co. ISBN-13: 978-0683006032.
- Idris, E. E., Iglesias, D. J. and Talon, M. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20(6): 619-626.
- Jadhav, G. G., Salunkhe, D. S., Nerkar D. P. and Bhadekar, R. K. (2010). Isolation and characterization of salt-tolerant nitrogen-fixing microorganisms from food. EurAsian Journal of Biosciences, 4: 33-40.
- Jan, R., Khan, M. A., Asaf, S., Lubna, Lee, I. J. and Kim, K. M. (2019). Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants, 8(10): 363.
- Jing, X. B., He, N., Zhang, Y., Cao, Y. R. and Xu, H. (2012). Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus. Canadian Journal Microbiology, 58:45–53.
- Kandler, O. and Weiss, N. (1986). Genus Lactobacillus Beijerinck 1901, 212AL. In Bergey’s Manual of Systematic Bacteriology, Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins. vol. 2, pp. 1209–1234.
- Karapire, M. and Özgönen, H. (2013). Interactions Between Beneficial Microorganisms in Nature and Importance in Agricultural Production. Turkish Journal of Scientific Reviews, (2): 149-157.
- Lenart, A. and Wolny-Koładka, K. (2013). The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow. Bulletin of Environmental Contamination and Toxicology, 90(1): 85–90.
- Liu, W., Yang, C., Shi, S. and Shu, W. (2014). Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings. Chemosphere, 97: 47–53.
- Ma, Y., Prasad, M., Rajkumar, M. and Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248–258.
- Nies, D.H. (2004). Metals and their compounds in the environment, in Merian E, Anke M, Ihnat M, Stoeppler, M. (Eds.), Part II. The Elements: Essential and Toxic Effects on Microorganisms. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Njoku, K. L., Akinyede, O. R. and Obidi, O. F. (2020). Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Scientific African, 10: e00545.
- Ongena, M. and Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology, 16(3): 115–125.
- Penrose, D. M. and Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia plantarum, 118(1): 10–15.
- Priyadarshanee, M. and Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Laboratory of Environmental Microbiology and Ecology, (LEnME)9: 1104686.
- Rajkumar, M., Prasad, M. N., Swaminathan, S. and Freitas, H. (2013). Climate change driven plant-metal-microbe interactions. Environment International, 53: 74–86.
- Rajkumar, M., Sandhya, S., Prasad, M. N. and Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30: 1562–1574.
- Samanta, A., Bera, P., Khatun, M., Sinha, C., Pal, P., Lalee, A. and Mandal, A. (2012). An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. Journal of Microbiology and Biotechnology Research., 2(1): 178-189.
- Sambrook, J., Fritschi, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory. ISBN-978-1936113-42-2.
- Satapute, P., Kulkarni, A. G, Shetti, A. and Hiremath, G. (2012). Isolation and characterization of nitrogen fixing Bacillus subtilis strain as-4 from agricultural soil. International Journal of Recent Scientific Research, 3(9): 762 -765.
- Schwyn, B. and Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160: 47–56.
- Sevim, A. and Sevim, E. (2015). Plasmid mediated antibiotic and heavy metal resistance in Bacillus Strains isolated from soils in Rize, Turkey. Suleyman Demirel University Journal of Natural and Applied Science, 19(2): 133-141.
- Soylu, S., Kara, M., Soylu, E. M., Uysal, A. and Kurt, Ş. (2022). Determination of biocontrol potentials of endophytic bacteria in biological control of citrus sour rot disease caused by Geotrichum citri-aurantii. Journal of Tekirdag Agricultural Faculty, 19(1): 177-191.
- Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology, 56(4): 845–857.
- Tak, H. I., Ahmad, F. and Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Reviews of environmental contamination and toxicology, 223: 33–52.
- Ullah, A., Heng, S., Munis, M. F. H., Fahad, S. and Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117: 28–40.
- Üreyen Esertaş, Ü. Z., Uzunalioğlu, E., Güzel, Ş., Bozdeveci, A. and Alpay Karaoğlu, Ş. (2020). Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper. Archives of Microbiology, 202: 1817–1829.
- Velásquez, L. and Dussan, J. (2009). Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167: 713–716.
- Wekesa, T. B., Wekesa, V. W., Onguso, J. M., Wafula, E. N. and Kavesu, N. (2022). Isolation and Characterization of Bacillus velezensis from Lake Bogoria as a Potential Biocontrol of Fusarium solani in Phaseolus vulgaris L. Bacteria, 1: 279–293.
- Yaldız, G. ve Şekeroğlu, N. (2013). Tıbbi ve Aromatik Bitkilerin Bazı Ağır Metallere Tepkisi. Turkish Journal of Scientific Reviews, (1): 80-84.
- Zhang, Y., Zhao, S., Liu, S., Peng, J., Zhang, H., Zhao, Q., Zheng, L., Chen, Y., Shen, Z., Xu, X. and Chen, C. (2022). Enhancing the phytoremediation of heavy metals by combining hyperaccumulator and heavy metal-resistant plant growth-promoting bacteria. Frontiers in Plant Science, 13: 912350.
- Zornoza, R., Gómez-Garrido, M., Martínez-Martínez, S., Gómez-López, M.D. and Faz, Á. (2017). Bioaugmentaton in Technosols created in abandoned pyritic tailings can contribute to enhance soil C sequestration and plant colonization. The Science of The Total Environment, 593-594: 357–367.
Determination of Bioremediation Potentials and Plant Growth-Promoting Properties of Bacillus Species Isolated from The Rhizosphere of Dactylorhiza urvilleana
Yıl 2023,
, 948 - 958, 25.12.2023
Ülkü Zeynep Üreyen Esertaş
,
Arif Bozdeveci
,
Emel Uzunalioğlu
,
Şengül Alpay Karaoğlu
Öz
Industrial activities have been one of the biggest factors of environmental destruction by affecting natural resources for decades. Heavy metals, which are one of the greatest dangers especially for the biosphere, can be found in industrial waste. Heavy metals that enter agricultural areas through industrial wastewater cause heavy metals to accumulate in the soil after a certain period. These accumulated heavy metals become an important environmental problem, threatening the life of living beings due to their toxic properties. In soils contaminated with wastewater containing heavy metals, microorganism populations are severely damaged in terms of both number and diversity. This heavy metal accumulation in water and soil has become a global health threat. Alternative processes are needed in the fight against heavy metal pollution. Bioremediation activity, defined as the removal process of environmental pollutants through microorganisms and plants, has gained significant importance in recent years. In our study, the tolerance potentials of Bacillus species isolated from the rhizosphere of Dactylorhiza urvilleana (Steudel) Bauman in the Ovit plateau of Rize province to metals (such as copper, lead, zinc, iron and silver) were investigated. In addition, plant growth promoting Indole Acetic Acid (IAA) production, phosphate dissolution, and ACC (1-Aminocyclopropane-1-Carboxylic acid) deaminase production were determined. It was determined that the isolated Bacillus species had a wide pH growth range and some Bacillus species were salt tolerant. The results showed that Bacillus species have bioremediation potential and plant growth promoting properties. It is thought that the bacteria isolated from the study can be used to make areas with heavy metal pollution suitable for plant cultivation and act as plant growth promoters in these areas. These bacteria strains are planned to be used as cheaper and more effective methods in studies in agriculture or areas with heavy metal pollution.
Destekleyen Kurum
RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ
Proje Numarası
RTEU-2015.53002.102.03.01
Teşekkür
This work supported supported by the Recep Tayyip Erdogan University Scientific Research Project (Project No: RTEU-2015.53002.102.03.01), Rize, Turkey.
Kaynakça
- Alexander, D. B. and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12: 39–45.
- Ambrosini, A., de Souza, R. and Passaglia, L. M. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil, 400: 193–207.
- Aydoğan, M. N., Algur, Ö. M. and Özdemir, M. (2013). Isolation and characterization of some bacteria and microfungus solving tricalcium phosphate. Journal of ADYUTAYAM 1: 11–20.
- Brígido, C., Duan, J. and Glick, B. R. (2015). Methods to Study 1 Aminocyclopropane-1-carboxylate (ACC) Deaminase in Plant Growth-Promoting Bacteria. In Handbook for Azospirillum; Springer: Berlin/Heidelberg, Germany, 2015: 287–305.
- Bruins, M. R., Kapil, S. and Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety 45(3): 198–207.
- Cappuccino, J. G. and Sherman, N. (1996) Microbiology a Laboratory Manual. The Benjamin Cummings Publishing Co. Inc., San Francisco.
- Casacuberta, E. and González, J. (2013). The impact of transposable elements in environmental adaptation. Molecular Ecology, 22: 1503–1517.
- Chen, C., Wang, M., Zhu, J., Tang, Y., Zhang, H., Zhao, Q., et al. (2022). Long-term effect of epigenetic modification in plant–microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process. Microbiome, 10: 1–19.
- Chen, X., Liu, X., Zhang, X., Cao, L. and Hu, X. (2017). Phytoremediation effect of Scirpus triqueter inoculated plant growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Journal of hazardous Materials, 325: 319–326.
- Clavé, G., Garoux, L., Boulanger, C., Hesemann, P. and Grison, C. (2016) Ecological recycling of a bio-based catalyst for Cu click reaction: a new strategy for a greener sustainable catalysis. Chemistryselect, 1:1410–1416.
- Cornu, J. Y., Elhabiri, M., Ferret, C., Geoffroy, V. A., Jézéquel, K., Leva, Y., Lollier, M., Schalk, I. J. and Lebeau, T. (2014) Contrasting effects of pyoverdine on the phytoextraction of Cu and Cd in a calcareous soil. Chemosphere, 103:212–219.
- Duman, Y., Yüzügüllü, Y. K., Sertel, A. and Polat, F. (2016). Production, purification and characterization of a thermo-alkali stable and metal-tolerant carboxymethylcellulase from newly isolated Bacillus methylotrophicus Y37. Turkish Journal of Chemistry, 40(5): 802-15.
- Dworken, M. and Foster, J. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of bacteriology, 75: 592–601.
- Fürnkranz, M., Müller, H. and Berg, G. (2009). Characterization of plant growth promoting bacteria from crops in Bolivia. Journal of plant diseases and protection, 116(4): 149–155.
- Gordon, A. S. and Weber, R. P. (1951). Colorimetric estimation of indole acetic acid. Plant Physiology, 26:192–195.
- Grison, C. (2015). Combining phytoextraction and ecocatalysis: a novel concept for greener chemistry, an opportunity for remediation. Environmental Science and Pollution Research, 22:5589–5591.
- Güldoğan, Ö., Pınar Aktepe, B. and Aysan, Y. (2022). Use of Different Bacillus Species in the Biological Control of Tomato Bacterial Speck Disease. Journal of Tekirdag Agricultural Faculty, 19(4): 829-839.
- Gururani, M., Upadhyaya, C., Baskar, V., Venkatesh, J., Nookaraju, A. and Park, S. (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. Journal Plant Growth Regulation, 32(2):245–258.
- Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T. and Williams, S. T. (1994). Bergey's Manual of Determinative Bacteriology (9th ed.), Baltimor: Williams & Wilkins, Co. ISBN-13: 978-0683006032.
- Idris, E. E., Iglesias, D. J. and Talon, M. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20(6): 619-626.
- Jadhav, G. G., Salunkhe, D. S., Nerkar D. P. and Bhadekar, R. K. (2010). Isolation and characterization of salt-tolerant nitrogen-fixing microorganisms from food. EurAsian Journal of Biosciences, 4: 33-40.
- Jan, R., Khan, M. A., Asaf, S., Lubna, Lee, I. J. and Kim, K. M. (2019). Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants, 8(10): 363.
- Jing, X. B., He, N., Zhang, Y., Cao, Y. R. and Xu, H. (2012). Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus. Canadian Journal Microbiology, 58:45–53.
- Kandler, O. and Weiss, N. (1986). Genus Lactobacillus Beijerinck 1901, 212AL. In Bergey’s Manual of Systematic Bacteriology, Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins. vol. 2, pp. 1209–1234.
- Karapire, M. and Özgönen, H. (2013). Interactions Between Beneficial Microorganisms in Nature and Importance in Agricultural Production. Turkish Journal of Scientific Reviews, (2): 149-157.
- Lenart, A. and Wolny-Koładka, K. (2013). The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within ArcelorMittal Poland steelworks in Cracow. Bulletin of Environmental Contamination and Toxicology, 90(1): 85–90.
- Liu, W., Yang, C., Shi, S. and Shu, W. (2014). Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings. Chemosphere, 97: 47–53.
- Ma, Y., Prasad, M., Rajkumar, M. and Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248–258.
- Nies, D.H. (2004). Metals and their compounds in the environment, in Merian E, Anke M, Ihnat M, Stoeppler, M. (Eds.), Part II. The Elements: Essential and Toxic Effects on Microorganisms. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Njoku, K. L., Akinyede, O. R. and Obidi, O. F. (2020). Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Scientific African, 10: e00545.
- Ongena, M. and Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology, 16(3): 115–125.
- Penrose, D. M. and Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia plantarum, 118(1): 10–15.
- Priyadarshanee, M. and Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Laboratory of Environmental Microbiology and Ecology, (LEnME)9: 1104686.
- Rajkumar, M., Prasad, M. N., Swaminathan, S. and Freitas, H. (2013). Climate change driven plant-metal-microbe interactions. Environment International, 53: 74–86.
- Rajkumar, M., Sandhya, S., Prasad, M. N. and Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30: 1562–1574.
- Samanta, A., Bera, P., Khatun, M., Sinha, C., Pal, P., Lalee, A. and Mandal, A. (2012). An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. Journal of Microbiology and Biotechnology Research., 2(1): 178-189.
- Sambrook, J., Fritschi, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory. ISBN-978-1936113-42-2.
- Satapute, P., Kulkarni, A. G, Shetti, A. and Hiremath, G. (2012). Isolation and characterization of nitrogen fixing Bacillus subtilis strain as-4 from agricultural soil. International Journal of Recent Scientific Research, 3(9): 762 -765.
- Schwyn, B. and Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160: 47–56.
- Sevim, A. and Sevim, E. (2015). Plasmid mediated antibiotic and heavy metal resistance in Bacillus Strains isolated from soils in Rize, Turkey. Suleyman Demirel University Journal of Natural and Applied Science, 19(2): 133-141.
- Soylu, S., Kara, M., Soylu, E. M., Uysal, A. and Kurt, Ş. (2022). Determination of biocontrol potentials of endophytic bacteria in biological control of citrus sour rot disease caused by Geotrichum citri-aurantii. Journal of Tekirdag Agricultural Faculty, 19(1): 177-191.
- Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular microbiology, 56(4): 845–857.
- Tak, H. I., Ahmad, F. and Babalola, O. O. (2013). Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Reviews of environmental contamination and toxicology, 223: 33–52.
- Ullah, A., Heng, S., Munis, M. F. H., Fahad, S. and Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117: 28–40.
- Üreyen Esertaş, Ü. Z., Uzunalioğlu, E., Güzel, Ş., Bozdeveci, A. and Alpay Karaoğlu, Ş. (2020). Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper. Archives of Microbiology, 202: 1817–1829.
- Velásquez, L. and Dussan, J. (2009). Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167: 713–716.
- Wekesa, T. B., Wekesa, V. W., Onguso, J. M., Wafula, E. N. and Kavesu, N. (2022). Isolation and Characterization of Bacillus velezensis from Lake Bogoria as a Potential Biocontrol of Fusarium solani in Phaseolus vulgaris L. Bacteria, 1: 279–293.
- Yaldız, G. ve Şekeroğlu, N. (2013). Tıbbi ve Aromatik Bitkilerin Bazı Ağır Metallere Tepkisi. Turkish Journal of Scientific Reviews, (1): 80-84.
- Zhang, Y., Zhao, S., Liu, S., Peng, J., Zhang, H., Zhao, Q., Zheng, L., Chen, Y., Shen, Z., Xu, X. and Chen, C. (2022). Enhancing the phytoremediation of heavy metals by combining hyperaccumulator and heavy metal-resistant plant growth-promoting bacteria. Frontiers in Plant Science, 13: 912350.
- Zornoza, R., Gómez-Garrido, M., Martínez-Martínez, S., Gómez-López, M.D. and Faz, Á. (2017). Bioaugmentaton in Technosols created in abandoned pyritic tailings can contribute to enhance soil C sequestration and plant colonization. The Science of The Total Environment, 593-594: 357–367.