Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method

Yıl 2026, Cilt: 23 Sayı: 1, 32 - 49, 07.01.2026
https://doi.org/10.33462/jotaf.1527232

Öz

Ensuring soil quality and sustainability is of vital importance in combating global climate change and desertification. Factors such as weakening of vegetation, soil erosion, compaction, and degradation reduce soil fertility, thus impacting soil quality. Evaluating soil quality accurately is essential, and the Soil Management Assessment Framework (SMAF) is a method that uses soil indicators to assess soil properties comprehensively. This study aimed to evaluate the relationship among tree species, bonitet classes, and soil quality in forest ecosystems at the watershed scale using the SMAF method. The research took place in the Karasu Watershed in Akifiye, Andırın district of Kahramanmaraş province. Soil indicators were selected from the physical and chemical properties of the soil. Soil indicators such as aggregate stability, water-filled pore volume, bulk density, carbon content, nutrient levels, pH, and electrical conductivity were used to determine soil quality indices in forest stands. Soil quality indices were determined and statistically interpreted by applying the SMAF method between tree species and bonitet classes in forest lands. Results showed that soil quality was lowest in black pine stands (69.42%) and the highest in oak stands (77.31%). Leafy stands had statistically higher soil quality. Soil quality indices ranged from 72.54 to 74.75 across bonitet classes, which are indicators of productivity (bonitet) in forest stands. No significant differences were found between bonitet classes and soil quality scores in karst forest ecosystems due to their karstic characteristics. Although soil quality may be high in karst areas, shallow soil depth limits plant growth. Therefore, a high soil quality index in karst areas can correspond to a low bonitet class. The negative effects of production activities and silvicultural interventions in forest ecosystems on soil quality can be eliminated by activities such as soil tillage. Implementing management strategies that prioritize soil protection and improvement in forest ecosystems with natural plant cover will enhance soil functionality and ensure long-term soil quality sustainability.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Destekleyen Kurum

Kahramanmaras Sütçü İmam University was supported with the project numbered 2017/4-31 D approved by BAP.

Kaynakça

  • Acir, N. (2019). Evaluation of production service capacity with soil quality assessments. Fresenius Environmental Bulletin, 28(10): 7030-7041.
  • Acir, N. (2022). Soil Quality Assessment Methods. In: Soil Quality and Assessment, Ed(s): Günal, H. and Budak, M., Iksad Publications, Ankara, Türkiye. (In Turkish)
  • Andrea, F., Bini, C. and Amaducci, S. (2017). Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Applied Soil Ecology, 123: 693–698.
  • Andrews, S. S., Karlen, D. L. and Cambardella, C. A. (2004). The soil management assessment framework: aquantitative soil quality evaluation method. Soil Science Society of America Journal, 68: 1945–1962.
  • Andrews, S. S., Karlen, D. L. and Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90(1): 25-45.
  • Anonim (2008) Provincial Environmental Status Report. Niğde Provincial Directorate of Environment and Forestry, Niğde, Türkiye. (In Turkish)
  • Arshad, M. A. and Martin, S. (2002). Identifying critical limits for soil quality indicators in agro- ecosystems. Agriculture, Ecosystems and Environment, 88: 153-160.
  • Bai, X. Y., Wang, S. J. and Xiong, K. N. (2013). Assessing spatialtemporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degradation and Development, 24(1): 47–56.
  • Blake, G. R., and Hartge, K. H. (1986). Bulk Density. In: Methods of Soil Analysis., Part1. Physical and mineralogical methods. 5.1 2nd Edition. Ed(s): Klute, A., American Society of Agronomy, Inc, Soil Science Society of America, Inc, Madison, Wisconsin, U.S.A.
  • Bray, R. H. and Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59: 39-45.
  • Cherubin, M. R., Bordonal R. O., Castioni G. A., Guimar˜aes E. M., Lisboa I. P., Moraes L. A. A., Menandro L. M. S., Tenelli S., Cerri C. E. P., Karlen D. L. and Carvalho J. L. N. (2021). Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 163: 113315.
  • Cherubin, M. R., Karlen, D. L., Franco, A. L. C., Cerri, C. E. P., Tormena, C. A. and Cerri, C. C. (2016). A soil management assessment framework (SMAF) evaluation of Brazilian sugarcane expansion on expansion on soil quality. Soil Science Society of America Journal, 80: 215–226.
  • Dindaroglu T. and Canbolat M. Y. (2013). Spatial changes in soil quality index under different land uses. Soil-Water Journal, 2(1): 1105-1114.
  • DMİ (1995). General directorate of state meteorology affairs, Kahramanmaraş Provincial Directorate of Meteorology, K. Maraş-Andırın Meteorology Station Data, 1975-2010. (In Turkish)
  • Dominati, E., Mackay, A., Green, S. and Patterson, M. A. (2014). Soil change-based methodology for the quantification and valuation of ecosystem services from agro- ecosystems: A case study of pastural agriculture in New Zealand. Ecological Economics, 100: 119–129.
  • Doran, J. W. and Jones, A. J. (1996). Methods for Assessing Soil Quality. Soil Science Society of America, Inc.Madison, Wisconsin, U.S.A.
  • Doran, J. W. and Parkin, T. B. (1994). Defining and Assessing Soil Quality. In: Defining Soil Quality for a Sustainable Environment. Ed(s): Doran, J. W., Coleman, D. C., Bezdicek, D. F., Stewart, B. A. Soil Science Society of America, Inc.American Society of Agronomy, Inc., Madison, Wisconsin, U.S.A.
  • Erkossa, T. F., Itanna, F. and Stahr, K. (2007). Indexing soil quality: a new paradigm in soil science research. Soil Research, 45(2): 129–137. https://doi.org/10.1071/SR06064
  • Evren, Ö. H. and Kaya, N. A. (2020). Comparison of some physical and chemical soil characteristics of crimean juniper (Juniperus excelsa M. Bieb) populations in Turkey. Journal of Tekirdag Agricultural Faculty, 17(1):37-52. https://doi.org/10.33462/jotaf.556666
  • Gelaw, A. M., Singh, B. R. and Lal, R. (2015). Soil quality indices for evaluating smallholder agricultural land uses in northern Ethiopia. Sustainability, 7: 2322–2337. https://doi.org/10.3390/su7032322
  • Günal, H., Korucu, T., Birkas, M., Özgöz, E. and Cotoara-Zamfir, R. H. (2015). Threats to sustainability of soil functions in Central and Southeast Europe. Sustainability, 7: 2161-2188.
  • Günel, H. A. (1981). Forest Revenues Lecture Notes. Bahçeköy, İstanbul, Türkiye. (In Turkish).
  • Harris, R. F., Karlen, D. L. and Mulla, D. J. (1996). A Conceptual Framework for Assessment and Management of Soil Quality and Health. In: Methods for Assessing Soil Quality. Ed(s): Doran, J. W. and Jones, A. J., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Hubbs, M. D., Norfleet, M. L. and Lightle, D. T. (2002). Interpreting the Soil Conditioning Index. 25th Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Conference for Sustainable Agriculture, 192-196 pp, 24-26 June, Alabama, U.S.A.
  • Jackson, M. (1958). Soil Chemical Analysis. p. 1-498. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, U.S.A.
  • Jackson, M. L. (1962). Soil Chemical Analysis. Prentice Hall Inc. Englewood Cliffs. New Jersey, U.S.A.
  • Kalu, S., Koirala, M., Khadka, U. R. and Anup, K. C. (2015). Soil quality assessment for different land use in the Panchase area of western Nepal. International Journal of Environmental Protection. 5: 38–43. https://doi.org/10.5963/IJEP0501006
  • Karaosmanoğlu, F. (2011). The physical geography of Kesis River Basin and its close vicinity. (MSc. Thesis) Yuzuncu Yıl University, Social Sciences Institute, Van, Türkiye. (In Turkish)
  • Karlen, D. L. and Stott, D. E. (1994). A Framework for Evaluation Physical and Chemical Indicators of Soil Quality. In: Defining Soil Quality for a Sustainable Environment. Ed(s): Doran, J. W., Coleman, D. C., Bezdicek, D. F., Stewart, B. A., Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, U.S.A.
  • Karlen, D. L., Hurley, E. G., Andrews, S. S., Cambardella, C. A., Meek, D. W., Duffy, M. D. and Mallarino, A. P. (2006). Crop rotation effects on soil quality at three Northern Corn/Soybean Belt Locations. Agronomy Journal, 98: 484-495.
  • Karlen, D. L., Tomer, M. D., Neppel, J. and Cambardella, C. A. (2008). A preliminary watershed scale soil quality assessment in north central Iowa, USA. Soil and Tillage Research, 99(2): 291-299.
  • Karlen, D. L., Veum, K. S., Sudduth, K. S., Obryckic, J. F. and Nunes, M. R. (2019). Soil health assessment: Past accomplishments, current activities, and future opportunities. Oil and Tillage Research, 195: 104365. https://doi.org/10.1016/j.still.2019.104365
  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H. and et al. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2: 111–128.
  • Kemper, W. D. and Rosenau, R. C. (1986). Aggregate Stability and Size Distribution. In: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 5.1, Second Edition.Ed(s): Klute, A., American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Klute, A. (1986). Water Retention: Laboratory Methods. In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, Second Edition. Ed(s): Klute, A., American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7: 5875-5895. https://doi.org/10.3390/su7055875
  • Laws, W. D. (1961). Farming Systems for Soil İmprovement in The Blacklands. Texas Research Foundation, Bulletin 10. Texas A&M University, College Stn., TX, U.S.A.
  • Liebig, M. A., Doran, J. W. and Vand Gardner, J. C. (1996). Evaluation of a field test kit for measuring selected soil quality indicators. Agronomy Journal, 88: 683-686.
  • Liebig, M. A., Miller, M. E., Varvel, G. E., Doran, J. W. and Hanson, J. D. (2004). AEPAT: A computer program to assess agronomic and environmental performance of management practices in long-term agroecosystem experiments. Agronomy Journal, 96: 109-115.
  • Mikhailova, E. A., Zurqani, H. A., Post, C. J., Schlautman, M. A., Post, G. C., Lin, L. and Hao, Z. (2021). Soil carbon regulating ecosystem services in the State of South Carolina, USA. Land, 10: 309.
  • MTA (2000). Kahramanmaraş Province Digital Geological Maps, General Directorate of Mineral Research and Exploration, Ankara, Türkiye. (In Turkish)
  • Nelson, D. W. and Sommers, L. E. (1982). Total Carbon, Organic Carbon, and Organic Matter. In: Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Ed(s): Page, A. L., American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • OGM (2006). Our Forest Presence. T. C. Ministry of Environment and Forestry, General Directorate of Forestry, Ankara, Türkiye. (In Turkish)
  • Ozgul, M. and Dindaroglu, T. (2021). Multi-criteria analysis for mapping of environmentally sensitive areas in a karst ecosystem. Environment, Development and Sustainability, 23(11): 16529-16559.
  • Peng, J., Xu, Y. Q., Zhang, R., Xiong, K. N. and Lan, A. J. (2013). Soil erosion monitoring and its implication in a limestone land suffering from rocky desertification in the Huajiang Canyon, Guizhou, Southwest China. Environmental Earth Sciences, 69: 831–841.
  • Richards, L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. United States Department of Agriculture Handbook 60: 94, U.S.A.
  • Romig, D. E., Garlynd, M. J. and Harris, R. F. (1996). Farmer-based Assessment of Soil Quality: A Soil Health Scorecard. In: Methods for Assessing Soil Quality. Ed(s): Doran J. W. and Jones A. J., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Shepherd, T. G. (2000). Visual Soil Assessment. Volume 1. Field Guide for Cropping and Pastoral Grazing on Flat to Rolling Country. horizons.mw & Landcare Research, Palmerston North, New Zealand.
  • Shepherd, T. G., Ross, C. W., Basher, L. R. and Saggar, S. (2000). Visual Soil Assessment, Volume 2. Soil Management Guidelines for Cropping and Pastoral Grazing on Flat to Rolling Country. horizons.mw & Landcare Research, Palmerston North, New Zealand.
  • Soil Science Society of America (1997) Glossary of Soil Science Terms. Soil Science Society of America, Madison, Wisconsin, U.S.A.
  • Sökmen, Ö., Özden, N., Göçmez, S. and Doyuran, N. (2024). Determining and mapping the fertility levels of agricultural soils in Manisa Demirci and Selendi Districts of Manisa Province Journal of Tekirdag Agricultural Faculty, 21: 517–532. https://doi.org/10.33462/jotaf.1317296
  • Stott, D. E., Cambardella, C. A., Tomer, M. D., Karlen, D. L. and Wolf, R. (2011). A soil quality assessment within the Iowa River South Fork Watershed. Soil Science Society of America, 75: 2271–2282.
  • Ülgen, N. and Ateşalp, M. (1972). Soil and Fertilizer Research Institute Technical Publications Series Number: 21, Metin Printing House, Ankara, Türkiye. (In Turkish)
  • Watanabe, F. S. and Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society American Proceedings, 29: 677- 678.
  • Wienhold, B. J., Varvel, G. E. and Jin, V. L. (2011). Corn cob residue carbon and nutrient dynamics during decomposition. Agronomy Journal, 103(4): 1192-1197.
  • Zobeck, T. M., Crownover, J., Dollar, M., Van Pelt, R. S., Acosta-Martinez, V., Bronson, K. F. and Upchurch, D. R. (2007). Investigation of soil conditioning index values for southern high plains agroecosystems. Journal of Soil and Water Conservation, 62(6): 433-442.

SMAF Yöntemi Kullanılarak Orman Ekosistemlerinde Toprak Kalitesi, Ağaç Türleri ve Verimlilik Arasındaki Korelasyonun Değerlendirilmesi

Yıl 2026, Cilt: 23 Sayı: 1, 32 - 49, 07.01.2026
https://doi.org/10.33462/jotaf.1527232

Öz

Toprak kalitesinin ve sürdürülebilirliğinin sağlanması, küresel iklim değişikliği ve çölleşmeyle mücadelede hayati öneme sahiptir. Bitki örtüsünün zayıflaması, toprak erozyonu, sıkışma ve bozulma gibi faktörler toprak verimliliğini azaltır ve böylece toprak kalitesini etkiler. Toprak kalitesini doğru bir şekilde değerlendirmek esastır ve Toprak Yönetimi Değerlendirme Çerçevesi (SMAF), toprak özelliklerini kapsamlı bir şekilde değerlendirmek için toprak göstergelerini kullanan bir yöntemdir. Bu çalışma, SMAF yöntemini kullanarak havza ölçeğinde orman ekosistemlerindeki ağaç türleri, bonitet sınıfları ve toprak kalitesi arasındaki ilişkiyi değerlendirmeyi amaçlamaktadır. Araştırma, Kahramanmaraş ili Andırın ilçesi Akifiye'deki Karasu Havzası'nda yapılmıştır. Toprağın fiziksel ve kimyasal özelliklerinden toprak göstergeleri seçilmiştir. Agregat kararlılığı, suyla dolu gözenek hacmi, hacim ağırlığı, karbon içeriği, besin seviyeleri, pH ve elektriksel iletkenlik gibi toprak göstergeleri, ormanlık alanlardaki toprak kalitesi endekslerini belirlemek için kullanılmıştır. Orman arazilerinde ağaç türü ve bonitet sınıfları arasında SMAF yöntemi uygulanarak toprak kalitesi endeksleri belirlenmiş ve istatistiki olarak yorumlanmıştır. Sonuçlar, toprak kalitesinin karaçam ormanlarında en düşük (%69.42) ve meşe ormanlarında en yüksek (%77.31) olduğunu göstermiştir. Yapraklı ormanların toprak kalitesi istatistiksel olarak daha yüksektir. Toprak kalitesi endeksleri, orman alanlarındaki üretkenliğin (bonitet) göstergesi olan bonitet sınıfları arasında 72.54 ile 74.75 arasında değişmektedir. Karstik özellikleri nedeniyle karst orman ekosistemlerinde bonitet sınıfları ve toprak kalitesi skorları arasında önemli bir fark bulunamamıştır. Toprak kalitesi karst alanlarında yüksek olsa da, sığ toprak derinliği bitki büyümesini sınırlamaktadır. Bu nedenle, karst alanlarında yüksek bir toprak kalitesi endeksi düşük bir bonitet sınıfına karşılık gelebilir. Orman ekosistemlerinde üretim çalışmaları ve silvikültürel müdahalelerin toprak kalitesindeki negatif etkisi toprak işleme gibi faaliyetlerle ortadan kaldırılabilir. Doğal bitki örtüsüne sahip orman ekosistemlerinde toprak koruma ve iyileştirmeyi önceliklendiren yönetim stratejilerinin uygulanması, toprak işlevselliğini artıracak ve uzun vadeli toprak kalitesi sürdürülebilirliğini sağlayacaktır.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Destekleyen Kurum

Kahramanmaras Sütçü İmam University was supported with the project numbered 2017/4-31 D approved by BAP.

Kaynakça

  • Acir, N. (2019). Evaluation of production service capacity with soil quality assessments. Fresenius Environmental Bulletin, 28(10): 7030-7041.
  • Acir, N. (2022). Soil Quality Assessment Methods. In: Soil Quality and Assessment, Ed(s): Günal, H. and Budak, M., Iksad Publications, Ankara, Türkiye. (In Turkish)
  • Andrea, F., Bini, C. and Amaducci, S. (2017). Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Applied Soil Ecology, 123: 693–698.
  • Andrews, S. S., Karlen, D. L. and Cambardella, C. A. (2004). The soil management assessment framework: aquantitative soil quality evaluation method. Soil Science Society of America Journal, 68: 1945–1962.
  • Andrews, S. S., Karlen, D. L. and Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90(1): 25-45.
  • Anonim (2008) Provincial Environmental Status Report. Niğde Provincial Directorate of Environment and Forestry, Niğde, Türkiye. (In Turkish)
  • Arshad, M. A. and Martin, S. (2002). Identifying critical limits for soil quality indicators in agro- ecosystems. Agriculture, Ecosystems and Environment, 88: 153-160.
  • Bai, X. Y., Wang, S. J. and Xiong, K. N. (2013). Assessing spatialtemporal evolution processes of karst rocky desertification land: Indications for restoration strategies. Land Degradation and Development, 24(1): 47–56.
  • Blake, G. R., and Hartge, K. H. (1986). Bulk Density. In: Methods of Soil Analysis., Part1. Physical and mineralogical methods. 5.1 2nd Edition. Ed(s): Klute, A., American Society of Agronomy, Inc, Soil Science Society of America, Inc, Madison, Wisconsin, U.S.A.
  • Bray, R. H. and Kurtz, L. T. (1945). Determination of total, organic and available forms of phosphorus in soils. Soil Science, 59: 39-45.
  • Cherubin, M. R., Bordonal R. O., Castioni G. A., Guimar˜aes E. M., Lisboa I. P., Moraes L. A. A., Menandro L. M. S., Tenelli S., Cerri C. E. P., Karlen D. L. and Carvalho J. L. N. (2021). Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 163: 113315.
  • Cherubin, M. R., Karlen, D. L., Franco, A. L. C., Cerri, C. E. P., Tormena, C. A. and Cerri, C. C. (2016). A soil management assessment framework (SMAF) evaluation of Brazilian sugarcane expansion on expansion on soil quality. Soil Science Society of America Journal, 80: 215–226.
  • Dindaroglu T. and Canbolat M. Y. (2013). Spatial changes in soil quality index under different land uses. Soil-Water Journal, 2(1): 1105-1114.
  • DMİ (1995). General directorate of state meteorology affairs, Kahramanmaraş Provincial Directorate of Meteorology, K. Maraş-Andırın Meteorology Station Data, 1975-2010. (In Turkish)
  • Dominati, E., Mackay, A., Green, S. and Patterson, M. A. (2014). Soil change-based methodology for the quantification and valuation of ecosystem services from agro- ecosystems: A case study of pastural agriculture in New Zealand. Ecological Economics, 100: 119–129.
  • Doran, J. W. and Jones, A. J. (1996). Methods for Assessing Soil Quality. Soil Science Society of America, Inc.Madison, Wisconsin, U.S.A.
  • Doran, J. W. and Parkin, T. B. (1994). Defining and Assessing Soil Quality. In: Defining Soil Quality for a Sustainable Environment. Ed(s): Doran, J. W., Coleman, D. C., Bezdicek, D. F., Stewart, B. A. Soil Science Society of America, Inc.American Society of Agronomy, Inc., Madison, Wisconsin, U.S.A.
  • Erkossa, T. F., Itanna, F. and Stahr, K. (2007). Indexing soil quality: a new paradigm in soil science research. Soil Research, 45(2): 129–137. https://doi.org/10.1071/SR06064
  • Evren, Ö. H. and Kaya, N. A. (2020). Comparison of some physical and chemical soil characteristics of crimean juniper (Juniperus excelsa M. Bieb) populations in Turkey. Journal of Tekirdag Agricultural Faculty, 17(1):37-52. https://doi.org/10.33462/jotaf.556666
  • Gelaw, A. M., Singh, B. R. and Lal, R. (2015). Soil quality indices for evaluating smallholder agricultural land uses in northern Ethiopia. Sustainability, 7: 2322–2337. https://doi.org/10.3390/su7032322
  • Günal, H., Korucu, T., Birkas, M., Özgöz, E. and Cotoara-Zamfir, R. H. (2015). Threats to sustainability of soil functions in Central and Southeast Europe. Sustainability, 7: 2161-2188.
  • Günel, H. A. (1981). Forest Revenues Lecture Notes. Bahçeköy, İstanbul, Türkiye. (In Turkish).
  • Harris, R. F., Karlen, D. L. and Mulla, D. J. (1996). A Conceptual Framework for Assessment and Management of Soil Quality and Health. In: Methods for Assessing Soil Quality. Ed(s): Doran, J. W. and Jones, A. J., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Hubbs, M. D., Norfleet, M. L. and Lightle, D. T. (2002). Interpreting the Soil Conditioning Index. 25th Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Conference for Sustainable Agriculture, 192-196 pp, 24-26 June, Alabama, U.S.A.
  • Jackson, M. (1958). Soil Chemical Analysis. p. 1-498. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, U.S.A.
  • Jackson, M. L. (1962). Soil Chemical Analysis. Prentice Hall Inc. Englewood Cliffs. New Jersey, U.S.A.
  • Kalu, S., Koirala, M., Khadka, U. R. and Anup, K. C. (2015). Soil quality assessment for different land use in the Panchase area of western Nepal. International Journal of Environmental Protection. 5: 38–43. https://doi.org/10.5963/IJEP0501006
  • Karaosmanoğlu, F. (2011). The physical geography of Kesis River Basin and its close vicinity. (MSc. Thesis) Yuzuncu Yıl University, Social Sciences Institute, Van, Türkiye. (In Turkish)
  • Karlen, D. L. and Stott, D. E. (1994). A Framework for Evaluation Physical and Chemical Indicators of Soil Quality. In: Defining Soil Quality for a Sustainable Environment. Ed(s): Doran, J. W., Coleman, D. C., Bezdicek, D. F., Stewart, B. A., Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, U.S.A.
  • Karlen, D. L., Hurley, E. G., Andrews, S. S., Cambardella, C. A., Meek, D. W., Duffy, M. D. and Mallarino, A. P. (2006). Crop rotation effects on soil quality at three Northern Corn/Soybean Belt Locations. Agronomy Journal, 98: 484-495.
  • Karlen, D. L., Tomer, M. D., Neppel, J. and Cambardella, C. A. (2008). A preliminary watershed scale soil quality assessment in north central Iowa, USA. Soil and Tillage Research, 99(2): 291-299.
  • Karlen, D. L., Veum, K. S., Sudduth, K. S., Obryckic, J. F. and Nunes, M. R. (2019). Soil health assessment: Past accomplishments, current activities, and future opportunities. Oil and Tillage Research, 195: 104365. https://doi.org/10.1016/j.still.2019.104365
  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H. and et al. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2: 111–128.
  • Kemper, W. D. and Rosenau, R. C. (1986). Aggregate Stability and Size Distribution. In: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 5.1, Second Edition.Ed(s): Klute, A., American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Klute, A. (1986). Water Retention: Laboratory Methods. In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, Second Edition. Ed(s): Klute, A., American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7: 5875-5895. https://doi.org/10.3390/su7055875
  • Laws, W. D. (1961). Farming Systems for Soil İmprovement in The Blacklands. Texas Research Foundation, Bulletin 10. Texas A&M University, College Stn., TX, U.S.A.
  • Liebig, M. A., Doran, J. W. and Vand Gardner, J. C. (1996). Evaluation of a field test kit for measuring selected soil quality indicators. Agronomy Journal, 88: 683-686.
  • Liebig, M. A., Miller, M. E., Varvel, G. E., Doran, J. W. and Hanson, J. D. (2004). AEPAT: A computer program to assess agronomic and environmental performance of management practices in long-term agroecosystem experiments. Agronomy Journal, 96: 109-115.
  • Mikhailova, E. A., Zurqani, H. A., Post, C. J., Schlautman, M. A., Post, G. C., Lin, L. and Hao, Z. (2021). Soil carbon regulating ecosystem services in the State of South Carolina, USA. Land, 10: 309.
  • MTA (2000). Kahramanmaraş Province Digital Geological Maps, General Directorate of Mineral Research and Exploration, Ankara, Türkiye. (In Turkish)
  • Nelson, D. W. and Sommers, L. E. (1982). Total Carbon, Organic Carbon, and Organic Matter. In: Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Ed(s): Page, A. L., American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • OGM (2006). Our Forest Presence. T. C. Ministry of Environment and Forestry, General Directorate of Forestry, Ankara, Türkiye. (In Turkish)
  • Ozgul, M. and Dindaroglu, T. (2021). Multi-criteria analysis for mapping of environmentally sensitive areas in a karst ecosystem. Environment, Development and Sustainability, 23(11): 16529-16559.
  • Peng, J., Xu, Y. Q., Zhang, R., Xiong, K. N. and Lan, A. J. (2013). Soil erosion monitoring and its implication in a limestone land suffering from rocky desertification in the Huajiang Canyon, Guizhou, Southwest China. Environmental Earth Sciences, 69: 831–841.
  • Richards, L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. United States Department of Agriculture Handbook 60: 94, U.S.A.
  • Romig, D. E., Garlynd, M. J. and Harris, R. F. (1996). Farmer-based Assessment of Soil Quality: A Soil Health Scorecard. In: Methods for Assessing Soil Quality. Ed(s): Doran J. W. and Jones A. J., Soil Science Society of America, Inc., Madison, Wisconsin, U.S.A.
  • Shepherd, T. G. (2000). Visual Soil Assessment. Volume 1. Field Guide for Cropping and Pastoral Grazing on Flat to Rolling Country. horizons.mw & Landcare Research, Palmerston North, New Zealand.
  • Shepherd, T. G., Ross, C. W., Basher, L. R. and Saggar, S. (2000). Visual Soil Assessment, Volume 2. Soil Management Guidelines for Cropping and Pastoral Grazing on Flat to Rolling Country. horizons.mw & Landcare Research, Palmerston North, New Zealand.
  • Soil Science Society of America (1997) Glossary of Soil Science Terms. Soil Science Society of America, Madison, Wisconsin, U.S.A.
  • Sökmen, Ö., Özden, N., Göçmez, S. and Doyuran, N. (2024). Determining and mapping the fertility levels of agricultural soils in Manisa Demirci and Selendi Districts of Manisa Province Journal of Tekirdag Agricultural Faculty, 21: 517–532. https://doi.org/10.33462/jotaf.1317296
  • Stott, D. E., Cambardella, C. A., Tomer, M. D., Karlen, D. L. and Wolf, R. (2011). A soil quality assessment within the Iowa River South Fork Watershed. Soil Science Society of America, 75: 2271–2282.
  • Ülgen, N. and Ateşalp, M. (1972). Soil and Fertilizer Research Institute Technical Publications Series Number: 21, Metin Printing House, Ankara, Türkiye. (In Turkish)
  • Watanabe, F. S. and Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society American Proceedings, 29: 677- 678.
  • Wienhold, B. J., Varvel, G. E. and Jin, V. L. (2011). Corn cob residue carbon and nutrient dynamics during decomposition. Agronomy Journal, 103(4): 1192-1197.
  • Zobeck, T. M., Crownover, J., Dollar, M., Van Pelt, R. S., Acosta-Martinez, V., Bronson, K. F. and Upchurch, D. R. (2007). Investigation of soil conditioning index values for southern high plains agroecosystems. Journal of Soil and Water Conservation, 62(6): 433-442.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Reis 0000-0003-3247-4174

Nurullah Acir 0000-0001-7591-0496

Turgay Dindaroğlu 0000-0003-2165-8138

Gönderilme Tarihi 6 Ağustos 2024
Kabul Tarihi 12 Kasım 2025
Yayımlanma Tarihi 7 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 23 Sayı: 1

Kaynak Göster

APA Reis, A., Acir, N., & Dindaroğlu, T. (2026). Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method. Tekirdağ Ziraat Fakültesi Dergisi, 23(1), 32-49. https://doi.org/10.33462/jotaf.1527232
AMA 1.Reis A, Acir N, Dindaroğlu T. Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method. JOTAF. 2026;23(1):32-49. doi:10.33462/jotaf.1527232
Chicago Reis, Ahmet, Nurullah Acir, ve Turgay Dindaroğlu. 2026. “Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method”. Tekirdağ Ziraat Fakültesi Dergisi 23 (1): 32-49. https://doi.org/10.33462/jotaf.1527232.
EndNote Reis A, Acir N, Dindaroğlu T (01 Ocak 2026) Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method. Tekirdağ Ziraat Fakültesi Dergisi 23 1 32–49.
IEEE [1]A. Reis, N. Acir, ve T. Dindaroğlu, “Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method”, JOTAF, c. 23, sy 1, ss. 32–49, Oca. 2026, doi: 10.33462/jotaf.1527232.
ISNAD Reis, Ahmet - Acir, Nurullah - Dindaroğlu, Turgay. “Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method”. Tekirdağ Ziraat Fakültesi Dergisi 23/1 (01 Ocak 2026): 32-49. https://doi.org/10.33462/jotaf.1527232.
JAMA 1.Reis A, Acir N, Dindaroğlu T. Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method. JOTAF. 2026;23:32–49.
MLA Reis, Ahmet, vd. “Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method”. Tekirdağ Ziraat Fakültesi Dergisi, c. 23, sy 1, Ocak 2026, ss. 32-49, doi:10.33462/jotaf.1527232.
Vancouver 1.Reis A, Acir N, Dindaroğlu T. Assessing the Correlation among Soil Quality, Tree Species, and Productivity in forest ecosystems using SMAF Method. JOTAF [Internet]. 01 Ocak 2026;23(1):32-49. Erişim adresi: https://izlik.org/JA42BX23XM