Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar

Yıl 2026, Cilt: 23 Sayı: 1, 306 - 318, 07.01.2026
https://doi.org/10.33462/jotaf.1763280

Öz

Altitude exerts a decisive influence on the physicochemical and functional attributes of apricots, yet its effects on the traditional Malatya dried apricot cultivar ‘Çataloğlu’ remain less studied. In this study, fruits harvested in 2024 from commercial orchards in low-altitude Battalgazi (~730 m) and high-altitude Darende (~1150 m) were compared in terms of pomological traits, bioactive composition, and antioxidant capacity. Fruits grown at high altitude had greater fruit length, flesh firmness of 6.32 kg cm⁻², titratable acidity, soluble solids content of 24.12%, and higher a* redness values, whereas no altitude-related differences were found in some size and other color parameters (L* and b*). Flesh firmness at low altitude was 6.00 kg cm⁻² and soluble solids content was 22.49%. Bioactive analysis showed that total phenolic content reached 784.14 µg GAE g⁻¹ FW at high altitude compared to 481.60 µg GAE g⁻¹ FW at low altitude. Similarly, DPPH and ABTS antioxidant activities were higher at high altitude, measuring 15.31 and 2.94 µmol TE g⁻¹ FW, respectively, versus 8.51 and 1.24 µmol TE g⁻¹ FW at low altitude. In contrast, total carotenoid content was higher at low altitude with 8.15 µg β-carotene g⁻¹ FW, while high-altitude fruits contained 6.08 µg β-carotene g⁻¹ FW. These contrasting tendencies reflect altitude-driven microclimatic differences: cooler temperatures in uplands stimulate phenolic accumulation, whereas warmer lowland conditions promote carotenoid biosynthesis. The findings highlight a clear quality balance. High-altitude fruits stand out for their antioxidant potential and functional health value, whereas low-altitude fruits are notable for their higher carotenoid content and bright yellow-orange color. These results can guide cultivar and site selection according to market demands and consumer preferences. With its relative tolerance to spring frost and drought, ‘Çataloğlu’ could see increased cultivation in high-altitude orchards under future climate change scenarios.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Abacı, Z. T. and Asma, B. M. (2010). Analysis of biological characteristics of some apricot cultivars in different ecological regions. Journal of Biological Sciences Research, 3(1), 165–168.
  • Akin, E. B., Karabulut, I. and Topcu, K (2008). Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chemistry, 107(2): 939–948. https://doi.org/10.1016/j.foodchem.2007.08.052
  • Anonymous (2024). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/site (Accessed Date: 13.05.2025).
  • Anonymous. (2024b). Meteorological data for Battalgazi and Darende. Turkish State Meteorological Service. https://www.mgm.gov.tr/ (Accessed Date: 21.06.2025).
  • Asma, B. M. (2007). Malatya: World’s capital of apricot culture. Chronica Horticulturae, 47(1): 20–24.
  • Biehler, E., Mayer, F., Hoffmann, L., Krause, E. and Bohn, T. (2010). Comparison of 3 Spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. Journal of Food Science, 75(1). https://doi.org/10.1111/j.1750-3841.2009.01417.x
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Faniadis, D., Drogoudi, P. D. and Vasilakakis, M. (2010). Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125(3): 301–304. https://doi.org/10.1016/j.scienta.2010.04.013
  • Fischer, G., Parra-Coronado, A. and Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2). https://doi.org/10.15446/agron.colomb.v40n2.101854
  • García-Gómez, B. E., Salazar, J. A., Nicolás-Almansa, M., Razi, M., Rubio, M., Ruiz, D. and Martínez-Gómez, P. (2020). Molecular bases of fruit quality in prunus species: An integrated genomic, transcriptomic, and metabolic review with a breeding perspective. International Journal of Molecular Sciences, 22(1): 333. https://doi.org/10.3390/ijms22010333
  • Gunes, N. T. (2006). Frost hardiness of some Turkish apricot cultivars during the bloom period. HortScience, 41(2): 310–312. https://doi.org/10.21273/hortsci.41.2.310
  • Gutiérrez-Gamboa, G., Pszczólkowski, P., Cañón, P., Taquichiri, M. and Peñarrieta, J. M. (2021). UV-B Radiation as a factor that deserves further research in Bolivian viticulture: A review. South African Journal of Enology and Viticulture, 42(2). https://doi.org/10.21548/42-2-4706
  • Haffner, K. and Vestrheim, S. (1997). Fruit quality of strawberry cultivars. Acta Horticulturae, 439(1): 325–332. https://doi.org/10.17660/ActaHortic.1997.439.51
  • Huang, M., Zhu, X., Bai, H., Wang, C., Gou, N., Zhang, Y., Chen, C., Yin, M., Wang, L. and Wuyun, T. (2023). Comparative anatomical and transcriptomics reveal the larger cell size as a major contributor to larger fruit size in apricot. International Journal of Molecular Sciences, 24(10): 8748. https://doi.org/10.3390/ijms24108748
  • Hummer, K. E., Pomper, K. W., Postman, J., Graham, C. J., Stover, E., Mercure, E. W., Aradhya, M., Crisosto, C. H., Ferguson, L., Thompson, M. M., Byers, P. and Zee, F. (2012). Emerging fruit crops. In: Fruit Breeding, Eds: Badenes, M. L. and Byrne, D. H., Springer, U.S.A. https://doi.org/10.1007/978-1-4419-0763-9_4
  • Ibrahim, I. A., Jabbour, A. A., Abdulmajeed, A. M., Elhady, M. E., Almaroai, Y. A. and Hashim, A. M. (2022). Adaptive responses of four medicinal plants to high altitude oxidative stresses through the regulation of antioxidants and secondary metabolites. Agronomy, 12(12): 3032. https://doi.org/10.3390/agronomy12123032
  • Kan, T. (2016). Investigation of vitamin content in apricot cultivars and wild apricot grown at different altitudes. Middle East Journal of Science, 2(2): 110–118. https://doi.org/10.23884/mejs.2016.2.2.05
  • Kan, T. and Karaat, F. E. (2024). Changes and correlations of some phenolic compounds in four apricot cultivars at different maturity levels. Applied Fruit Science, 66(2): 515–522. https://doi.org/10.1007/s10341-024-01032-9
  • Kan, T., and Karaat, F. E. (2019). Investigation of Phenolic Compounds in Fruits of Some Apricot Cultivars and Genotype Grown at Different Altitudes. Yüzüncü Yıl University Journal of Agricultural Sciences, 29(1): 88–93. https://doi.org/10.29133/yyutbd.476348
  • Karaat, F. E. and Serçe, S. (2019). Total phenolics, antioxidant capacities and pomological characteristics of 12 apricot cultivars grown in Turkey. Journal of ADYUTAYAM, 7(1): 46–60.
  • Karataş, N. and Şengül, M. (2020). Some important physicochemical and bioactive characteristics of the main apricot cultivars from Turkey. Turkish Journal of Agriculture and Forestry, 44(6): 651–661. https://doi.org/10.3906/tar-2002-95
  • Karlıdağ, H., Karaat, F. E., Kutsal, İ. K., Eşitken, A., Kan, T. and Atay, S. (2022). Effects of some foliar applications on reduction of fruit drop and some fruit characteristics of apricot trees grown at high altitudes. Mustafa Kemal University Journal of Agricultural Sciences, 27(3): 396–401. https://doi.org/10.37908/mkutbd.1100113
  • Karppinen, K., Zoratti, L., Nguyenquynh, N., Häggman, H. and Jaakola, L. (2016). On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Frontiers in Plant Science, 7: 655. https://doi.org/10.3389/fpls.2016.00655
  • Korsakova, S., Korzin, V., Plugatar, Y., Kazak, A., Gorina, V., Korzina, N., Khokhlov, S. and Makoveichuk, K. (2023). Modelling of climate change’s impact on Prunus armeniaca L.’s flowering time. Inventions, 8(3): 65. https://doi.org/10.3390/inventions8030065
  • Kulbat, K. (2016). The role of phenolic compounds in plant resistance. Biotechnology and Food Science, 4(2): 97-108. https://doi.org/10.34658/BFS.2016.80.2.97-108
  • Kutsal, İ. K. (2024). Determination of responses to drought stress and recovery abilities of some apricot cultivars. (Ph.D. Thesis). Malatya Turgut Ozal University, The Instute of Graduate Sciences, Malatya, Türkiye.
  • Mansour, G., Ghanem, C., Mercenaro, L., Nassif, N., Hassoun, G. and Del Caro, A. (2022). Effects of altitude on the chemical composition of grapes and wine: A review. OENO One, 56(1): 227–239. https://doi.org/10.20870/oeno-one.2022.56.1.4895
  • McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12): 1254–1255. https://doi.org/10.21273/HORTSCI.27.12.1254
  • Medda, S., Fadda, A. and Mulas, M. (2022). Influence of climate change on metabolism and biological characteristics in perennial woody fruit crops in the Mediterranean environment. Horticulturae, 8(4): 273. https://doi.org/10.3390/horticulturae8040273
  • Muradoğlu, F., Kayakeser, U. and Başak, İ. (2022). Morphometric properties comparison of some Turkish and foreign apricot variety grown at high altitude. Yüzüncü Yıl University Journal of Agricultural Sciences, 32(2): 249–259. https://doi.org/10.29133/yyutbd.1010212
  • Naryal, A., Dolkar, D., Bhardwaj, A. K., Kant, A., Chaurasia, O. P. and Stobdan, T. (2020). Effect of altitude on the phenology and fruit quality attributes of apricot (Prunus armeniaca L.) fruits. Defence Life Science Journal, 5(1): 18–24. https://doi.org/10.14429/dlsj.5.14656
  • Negi, S. and Handa, N. (2008). Structural deterioration of produce: The breakdown of cell wall components. In: Postharvest Biology and Technology of Fruits, Vegetables, and Flowers, Ed(s): Yahia, E. M., Wiley-Blackwell, U.S.A.
  • Ölmez, H. A., Ak, B. E. and Gülcan, R. (2006). The relationship between stomata density and fruit quality of some apricot varieties growing in different altitudes in Malatya Province. Acta Horticulturae, 701: 163–166. https://doi.org/10.17660/ActaHortic.2006.701.24
  • Özgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C. and Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4): 1151–1157. https://doi.org/10.1021/jf051960d
  • Paniagua, C., Posé, S., Morris, V. J., Kirby, A. R., Quesada, M. A. and Mercado, J. A. (2014). Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 114(6): 1375–1383. https://doi.org/10.1093/aob/mcu149
  • Rice-Evans, C. A., Miller, N. J. and Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7): 933–956. https://doi.org/10.1016/0891-5849(95)02227-9
  • Şahin, S., Tonkaz, T., and Yarilgaç, T. (2022). Chemical composition, antioxidant capacity and total phenolic content of hazelnuts grown in different countries. Journal of Tekirdag Agricultural Faculty, 19(2): 262–270. https://doi.org/10.33462/jotaf.893244
  • Santin, M., Simoni, S., Vangelisti, A., Giordani, T., Cavallini, A., Mannucci, A., Ranieri, A. and Castagna, A. (2023). Transcriptomic analysis on the peel of UV-B-Exposed peach fruit reveals an upregulation of phenolic- and UVR8-Related pathways. Plants, 12(9): 1818. https://doi.org/10.3390/plants12091818
  • Sari̇das, M. A., Ağcam, E. and Paydaş, S. (2023). The nutritional composition of key apricot varieties cultivated in Türkiye with a focus on health-related compounds. International Journal of Agriculture Environment and Food Sciences, 7(4): 934–939. https://doi.org/10.31015/jaefs.2023.4.25
  • Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. and Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13): 2452. https://doi.org/10.3390/molecules24132452
  • Sikhandakasmita, P., Kataoka, I., Mochioka, R. and Beppu, K. (2022). Impact of temperatures during fruit development on fruit growth rate and qualities of ‘KU-PP2’ peach. The Horticulture Journal, 91(2): 152–156. https://doi.org/10.2503/hortj.UTD-341
  • Slinkard, K., and Singleton, V. L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1): 49–55. https://doi.org/10.5344/ajev.1977.28.1.49
  • Stra, A., Almarwaey, L. O., Alagoz, Y., Moreno, J. C. and Al-Babili, S. (2023). Carotenoid metabolism: New insights and synthetic approaches. Frontiers in Plant Science, 13(1): 180-194. https://doi.org/10.3389/fpls.2022.1072061
  • Su, C., Zheng, X., Zhang, D., Chen, Y., Xiao, J., He, Y., He, J., Wang, B. and Shi, X. (2020). Investigation of sugars, organic acids, phenolic compounds, antioxidant activity and the aroma fingerprint of small white apricots grown in Xinjiang. Journal of Food Science, 85(12): 4300–4311. https://doi.org/10.1111/1750-3841.15523
  • Tahmaz, H., Yüksel Küskü, D., Söylemezoğlu, G., and Çeli̇k, H. (2022). Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes. Journal of Tekirdag Agricultural Faculty, 19(2): 318–331. https://doi.org/10.33462/jotaf.952108
  • Taiz, L., Zeiger, E., Møller, I. M. and Murphy, A. S. (2015). Plant Physiology and Development (6th Edition). Sinauer Associates, Inc., Publishers, U.S.A.
  • Tang, H., Wang, Q., Xie, H. and Li, W. (2024). The function of secondary metabolites in resisting stresses in horticultural plants. Fruit Research, 4(1), 18–27. https://doi.org/10.48130/frures-0024-0014
  • Tomás‐Barberán, F. A., Ruiz, D., Valero, D., Rivera, D., Obón, C., Sánchez‐Roca, C. and Gil, M. I. (2013). Health Benefits from Pomegranates and Stone Fruit, Including Plums, Peaches, Apricots and Cherries. In: Bioactives in Fruit (1st ed.), Eds: Skinner, M. and Hunter, D., Wiley, U.S.A. https://doi.org/10.1002/9781118635551.ch7
  • Wani, S. M., Hussain, P. R., Masoodi, F. A., Ahmad, M., Wani, T. A., Gani, A., Rather, S. A. and Suradkar, P. (2017). Evaluation of the composition of bioactive compounds and antioxidant activity in fourteen apricot varieties of North India. Journal of Agricultural Science, 9(5): 66. https://doi.org/10.5539/jas.v9n5p66
  • Wu, W., Wu, H., Liang, R., Huang, S., Meng, L., Zhang, M., Xie, F. and Zhu, H. (2025). Light regulates the synthesis and accumulation of plant secondary metabolites. Frontiers in Plant Science, 16(1): 164-184. https://doi.org/10.3389/fpls.2025.1644472
  • Xi, W., Feng, J., Liu, Y., Zhang, S. and Zhao, G. (2019). The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin. BMC Plant Biology, 19(1): 287-295. https://doi.org/10.1186/s12870-019-1898-4
  • Xue, X., Duan, Y., Wang, J., Ma, F. and Li, P. (2021). Nighttime temperatures and sunlight intensities interact to influence anthocyanin biosynthesis and photooxidative sunburn in “Fuji” apple. Frontiers in Plant Science, 12(2): 694-711. https://doi.org/10.3389/fpls.2021.694954
  • Zejak, D., Glisic, I., Spalevic, V., Maskovic, P. and Dudic, B. (2021). Sustainable management of fruit growing in rural areas of Montenegro: the impact of location on the phenological and nutritional properties on raspberry (Rubus idaeus L.). Agronomy, 11(8), 1663. https://doi.org/10.3390/agronomy11081663
  • Zhao, Y., Min, T., Chen, M., Wang, H., Zhu, C., Jin, R., Allan, A. C., Lin-Wang, K. and Xu, C. (2021). The photomorphogenic transcription factor PpHY5 regulates anthocyanin accumulation in response to UVA and UVB irradiation. Frontiers in Plant Science, 11, 603178. https://doi.org/10.3389/fpls.2020.603178

Rakımın ‘Çataloğlu’ Kayısı Çeşidinin Pomolojik Özellikleri, Biyoaktif Bileşimi ve Antioksidan Kapasitesi Üzerine Etkileri

Yıl 2026, Cilt: 23 Sayı: 1, 306 - 318, 07.01.2026
https://doi.org/10.33462/jotaf.1763280

Öz

Rakım, kayısıların fizikokimyasal ve fonksiyonel özellikleri üzerinde belirleyici bir etkiye sahiptir. Bununla beraber, rakımın Malatya yöresinin geleneksel ve önemli kurutmalık kayısı çeşitlerinden ‘Çataloğlu’ üzerindeki etkileri yeterince araştırılmamıştır. Bu çalışmada, 2024 yılında düşük rakımlı Battalgazi (~730 m) ile yüksek rakımlı Darende (~1150 m) ilçelerinde bulunan ticari kayısı bahçelerinden hasat edilen meyveler, pomolojik özellikler, biyoaktif bileşim ve antioksidan kapasite açısından karşılaştırılmıştır. Yüksek rakımda yetiştirilen meyveler; meyve uzunluğu, meyve eti sertliği, titre edilebilir asitlik, suda çözünebilir kuru madde içeriği ve a* renk değerleri bakımından anlamlı derecede üstün bulunmuş, buna karşın bazı boyut ve diğer renk parametrelerinde (L* ve b*) rakıma bağlı fark tespit edilmemiştir. Meyve eti sertliği yüksek rakımda 6.32 kg cm⁻² iken düşük rakımda 6.00 kg cm⁻²; suda çözünebilir kuru madde yüksek rakımda %24.12, düşük rakımda %22.49 olarak belirlenmiştir. Biyoaktif bileşen analizleri, yüksek rakımda toplam fenolik madde içeriği ile DPPH ve ABTS antioksidan aktivitelerinin belirgin şekilde daha yüksek olduğunu, toplam karotenoid içeriğinin (β-karoten eşdeğeri) ise düşük rakımda daha fazla olduğunu göstermiştir. Toplam fenolik içerik, yüksek rakımda 784.14 µg GAE g⁻¹ YA (Yaş Ağırlık) iken düşük rakımda 481.60 µg GAE g⁻¹ YA; DPPH aktivitesi sırasıyla 15.31 ve 8.51 µmol TE g⁻¹ YA; ABTS aktivitesi 2.94 ve 1.24 µmol TE g⁻¹ YA olarak kaydedilmiştir. Toplam karotenoid içeriği ise düşük rakımda 8.15 µg β-karoten g⁻¹ YA, yüksek rakımda 6.08 µg β-karoten g⁻¹ YA düzeyindedir. Bu karşıt eğilimlerin, rakıma bağlı mikroklimatik farklılıkların bir yansıması olduğu değerlendirilmiştir. Yüksek rakımda düşük ortalama sıcaklıklar fenolik bileşiklerin birikimini, daha yüksek ortalama sıcaklıkların hüküm sürdüğü ova koşulları ise karotenoid biyosentezini teşvik etmektedir. Bulgular, belirgin bir kalite dengesi ortaya koymaktadır. Yüksek rakımda yetiştirilen meyveler, antioksidan potansiyel ve fonksiyonel sağlık değeri açısından öne çıkarken, düşük rakımda yetiştirilenler daha yüksek karotenoid içeriği ve sarı-turuncu renk canlılığı ile dikkat çekmektedir. Elde edilen veriler, tüketici tercihlerine ve pazarlama stratejilerine yönelik olarak farklı rakım kuşaklarında çeşit ve yetiştirme yeri seçiminde yol gösterici niteliktedir. İlkbahar geç donlarına ve kuraklığa karşı göreceli toleransı ile ‘Çataloğlu’ çeşidi, gelecekteki iklim değişikliği senaryolarında özellikle yüksek rakımlı bahçelerde yetiştiriciliği artabilecek bir çeşit olarak öne çıkmaktadır.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Abacı, Z. T. and Asma, B. M. (2010). Analysis of biological characteristics of some apricot cultivars in different ecological regions. Journal of Biological Sciences Research, 3(1), 165–168.
  • Akin, E. B., Karabulut, I. and Topcu, K (2008). Some compositional properties of main Malatya apricot (Prunus armeniaca L.) varieties. Food Chemistry, 107(2): 939–948. https://doi.org/10.1016/j.foodchem.2007.08.052
  • Anonymous (2024). Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/site (Accessed Date: 13.05.2025).
  • Anonymous. (2024b). Meteorological data for Battalgazi and Darende. Turkish State Meteorological Service. https://www.mgm.gov.tr/ (Accessed Date: 21.06.2025).
  • Asma, B. M. (2007). Malatya: World’s capital of apricot culture. Chronica Horticulturae, 47(1): 20–24.
  • Biehler, E., Mayer, F., Hoffmann, L., Krause, E. and Bohn, T. (2010). Comparison of 3 Spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. Journal of Food Science, 75(1). https://doi.org/10.1111/j.1750-3841.2009.01417.x
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Faniadis, D., Drogoudi, P. D. and Vasilakakis, M. (2010). Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125(3): 301–304. https://doi.org/10.1016/j.scienta.2010.04.013
  • Fischer, G., Parra-Coronado, A. and Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2). https://doi.org/10.15446/agron.colomb.v40n2.101854
  • García-Gómez, B. E., Salazar, J. A., Nicolás-Almansa, M., Razi, M., Rubio, M., Ruiz, D. and Martínez-Gómez, P. (2020). Molecular bases of fruit quality in prunus species: An integrated genomic, transcriptomic, and metabolic review with a breeding perspective. International Journal of Molecular Sciences, 22(1): 333. https://doi.org/10.3390/ijms22010333
  • Gunes, N. T. (2006). Frost hardiness of some Turkish apricot cultivars during the bloom period. HortScience, 41(2): 310–312. https://doi.org/10.21273/hortsci.41.2.310
  • Gutiérrez-Gamboa, G., Pszczólkowski, P., Cañón, P., Taquichiri, M. and Peñarrieta, J. M. (2021). UV-B Radiation as a factor that deserves further research in Bolivian viticulture: A review. South African Journal of Enology and Viticulture, 42(2). https://doi.org/10.21548/42-2-4706
  • Haffner, K. and Vestrheim, S. (1997). Fruit quality of strawberry cultivars. Acta Horticulturae, 439(1): 325–332. https://doi.org/10.17660/ActaHortic.1997.439.51
  • Huang, M., Zhu, X., Bai, H., Wang, C., Gou, N., Zhang, Y., Chen, C., Yin, M., Wang, L. and Wuyun, T. (2023). Comparative anatomical and transcriptomics reveal the larger cell size as a major contributor to larger fruit size in apricot. International Journal of Molecular Sciences, 24(10): 8748. https://doi.org/10.3390/ijms24108748
  • Hummer, K. E., Pomper, K. W., Postman, J., Graham, C. J., Stover, E., Mercure, E. W., Aradhya, M., Crisosto, C. H., Ferguson, L., Thompson, M. M., Byers, P. and Zee, F. (2012). Emerging fruit crops. In: Fruit Breeding, Eds: Badenes, M. L. and Byrne, D. H., Springer, U.S.A. https://doi.org/10.1007/978-1-4419-0763-9_4
  • Ibrahim, I. A., Jabbour, A. A., Abdulmajeed, A. M., Elhady, M. E., Almaroai, Y. A. and Hashim, A. M. (2022). Adaptive responses of four medicinal plants to high altitude oxidative stresses through the regulation of antioxidants and secondary metabolites. Agronomy, 12(12): 3032. https://doi.org/10.3390/agronomy12123032
  • Kan, T. (2016). Investigation of vitamin content in apricot cultivars and wild apricot grown at different altitudes. Middle East Journal of Science, 2(2): 110–118. https://doi.org/10.23884/mejs.2016.2.2.05
  • Kan, T. and Karaat, F. E. (2024). Changes and correlations of some phenolic compounds in four apricot cultivars at different maturity levels. Applied Fruit Science, 66(2): 515–522. https://doi.org/10.1007/s10341-024-01032-9
  • Kan, T., and Karaat, F. E. (2019). Investigation of Phenolic Compounds in Fruits of Some Apricot Cultivars and Genotype Grown at Different Altitudes. Yüzüncü Yıl University Journal of Agricultural Sciences, 29(1): 88–93. https://doi.org/10.29133/yyutbd.476348
  • Karaat, F. E. and Serçe, S. (2019). Total phenolics, antioxidant capacities and pomological characteristics of 12 apricot cultivars grown in Turkey. Journal of ADYUTAYAM, 7(1): 46–60.
  • Karataş, N. and Şengül, M. (2020). Some important physicochemical and bioactive characteristics of the main apricot cultivars from Turkey. Turkish Journal of Agriculture and Forestry, 44(6): 651–661. https://doi.org/10.3906/tar-2002-95
  • Karlıdağ, H., Karaat, F. E., Kutsal, İ. K., Eşitken, A., Kan, T. and Atay, S. (2022). Effects of some foliar applications on reduction of fruit drop and some fruit characteristics of apricot trees grown at high altitudes. Mustafa Kemal University Journal of Agricultural Sciences, 27(3): 396–401. https://doi.org/10.37908/mkutbd.1100113
  • Karppinen, K., Zoratti, L., Nguyenquynh, N., Häggman, H. and Jaakola, L. (2016). On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Frontiers in Plant Science, 7: 655. https://doi.org/10.3389/fpls.2016.00655
  • Korsakova, S., Korzin, V., Plugatar, Y., Kazak, A., Gorina, V., Korzina, N., Khokhlov, S. and Makoveichuk, K. (2023). Modelling of climate change’s impact on Prunus armeniaca L.’s flowering time. Inventions, 8(3): 65. https://doi.org/10.3390/inventions8030065
  • Kulbat, K. (2016). The role of phenolic compounds in plant resistance. Biotechnology and Food Science, 4(2): 97-108. https://doi.org/10.34658/BFS.2016.80.2.97-108
  • Kutsal, İ. K. (2024). Determination of responses to drought stress and recovery abilities of some apricot cultivars. (Ph.D. Thesis). Malatya Turgut Ozal University, The Instute of Graduate Sciences, Malatya, Türkiye.
  • Mansour, G., Ghanem, C., Mercenaro, L., Nassif, N., Hassoun, G. and Del Caro, A. (2022). Effects of altitude on the chemical composition of grapes and wine: A review. OENO One, 56(1): 227–239. https://doi.org/10.20870/oeno-one.2022.56.1.4895
  • McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12): 1254–1255. https://doi.org/10.21273/HORTSCI.27.12.1254
  • Medda, S., Fadda, A. and Mulas, M. (2022). Influence of climate change on metabolism and biological characteristics in perennial woody fruit crops in the Mediterranean environment. Horticulturae, 8(4): 273. https://doi.org/10.3390/horticulturae8040273
  • Muradoğlu, F., Kayakeser, U. and Başak, İ. (2022). Morphometric properties comparison of some Turkish and foreign apricot variety grown at high altitude. Yüzüncü Yıl University Journal of Agricultural Sciences, 32(2): 249–259. https://doi.org/10.29133/yyutbd.1010212
  • Naryal, A., Dolkar, D., Bhardwaj, A. K., Kant, A., Chaurasia, O. P. and Stobdan, T. (2020). Effect of altitude on the phenology and fruit quality attributes of apricot (Prunus armeniaca L.) fruits. Defence Life Science Journal, 5(1): 18–24. https://doi.org/10.14429/dlsj.5.14656
  • Negi, S. and Handa, N. (2008). Structural deterioration of produce: The breakdown of cell wall components. In: Postharvest Biology and Technology of Fruits, Vegetables, and Flowers, Ed(s): Yahia, E. M., Wiley-Blackwell, U.S.A.
  • Ölmez, H. A., Ak, B. E. and Gülcan, R. (2006). The relationship between stomata density and fruit quality of some apricot varieties growing in different altitudes in Malatya Province. Acta Horticulturae, 701: 163–166. https://doi.org/10.17660/ActaHortic.2006.701.24
  • Özgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C. and Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4): 1151–1157. https://doi.org/10.1021/jf051960d
  • Paniagua, C., Posé, S., Morris, V. J., Kirby, A. R., Quesada, M. A. and Mercado, J. A. (2014). Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 114(6): 1375–1383. https://doi.org/10.1093/aob/mcu149
  • Rice-Evans, C. A., Miller, N. J. and Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7): 933–956. https://doi.org/10.1016/0891-5849(95)02227-9
  • Şahin, S., Tonkaz, T., and Yarilgaç, T. (2022). Chemical composition, antioxidant capacity and total phenolic content of hazelnuts grown in different countries. Journal of Tekirdag Agricultural Faculty, 19(2): 262–270. https://doi.org/10.33462/jotaf.893244
  • Santin, M., Simoni, S., Vangelisti, A., Giordani, T., Cavallini, A., Mannucci, A., Ranieri, A. and Castagna, A. (2023). Transcriptomic analysis on the peel of UV-B-Exposed peach fruit reveals an upregulation of phenolic- and UVR8-Related pathways. Plants, 12(9): 1818. https://doi.org/10.3390/plants12091818
  • Sari̇das, M. A., Ağcam, E. and Paydaş, S. (2023). The nutritional composition of key apricot varieties cultivated in Türkiye with a focus on health-related compounds. International Journal of Agriculture Environment and Food Sciences, 7(4): 934–939. https://doi.org/10.31015/jaefs.2023.4.25
  • Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. and Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13): 2452. https://doi.org/10.3390/molecules24132452
  • Sikhandakasmita, P., Kataoka, I., Mochioka, R. and Beppu, K. (2022). Impact of temperatures during fruit development on fruit growth rate and qualities of ‘KU-PP2’ peach. The Horticulture Journal, 91(2): 152–156. https://doi.org/10.2503/hortj.UTD-341
  • Slinkard, K., and Singleton, V. L. (1977). Total phenol analysis: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1): 49–55. https://doi.org/10.5344/ajev.1977.28.1.49
  • Stra, A., Almarwaey, L. O., Alagoz, Y., Moreno, J. C. and Al-Babili, S. (2023). Carotenoid metabolism: New insights and synthetic approaches. Frontiers in Plant Science, 13(1): 180-194. https://doi.org/10.3389/fpls.2022.1072061
  • Su, C., Zheng, X., Zhang, D., Chen, Y., Xiao, J., He, Y., He, J., Wang, B. and Shi, X. (2020). Investigation of sugars, organic acids, phenolic compounds, antioxidant activity and the aroma fingerprint of small white apricots grown in Xinjiang. Journal of Food Science, 85(12): 4300–4311. https://doi.org/10.1111/1750-3841.15523
  • Tahmaz, H., Yüksel Küskü, D., Söylemezoğlu, G., and Çeli̇k, H. (2022). Phenolic compound and antioxidant capacity contents of Vitis labrusca L. genotypes. Journal of Tekirdag Agricultural Faculty, 19(2): 318–331. https://doi.org/10.33462/jotaf.952108
  • Taiz, L., Zeiger, E., Møller, I. M. and Murphy, A. S. (2015). Plant Physiology and Development (6th Edition). Sinauer Associates, Inc., Publishers, U.S.A.
  • Tang, H., Wang, Q., Xie, H. and Li, W. (2024). The function of secondary metabolites in resisting stresses in horticultural plants. Fruit Research, 4(1), 18–27. https://doi.org/10.48130/frures-0024-0014
  • Tomás‐Barberán, F. A., Ruiz, D., Valero, D., Rivera, D., Obón, C., Sánchez‐Roca, C. and Gil, M. I. (2013). Health Benefits from Pomegranates and Stone Fruit, Including Plums, Peaches, Apricots and Cherries. In: Bioactives in Fruit (1st ed.), Eds: Skinner, M. and Hunter, D., Wiley, U.S.A. https://doi.org/10.1002/9781118635551.ch7
  • Wani, S. M., Hussain, P. R., Masoodi, F. A., Ahmad, M., Wani, T. A., Gani, A., Rather, S. A. and Suradkar, P. (2017). Evaluation of the composition of bioactive compounds and antioxidant activity in fourteen apricot varieties of North India. Journal of Agricultural Science, 9(5): 66. https://doi.org/10.5539/jas.v9n5p66
  • Wu, W., Wu, H., Liang, R., Huang, S., Meng, L., Zhang, M., Xie, F. and Zhu, H. (2025). Light regulates the synthesis and accumulation of plant secondary metabolites. Frontiers in Plant Science, 16(1): 164-184. https://doi.org/10.3389/fpls.2025.1644472
  • Xi, W., Feng, J., Liu, Y., Zhang, S. and Zhao, G. (2019). The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin. BMC Plant Biology, 19(1): 287-295. https://doi.org/10.1186/s12870-019-1898-4
  • Xue, X., Duan, Y., Wang, J., Ma, F. and Li, P. (2021). Nighttime temperatures and sunlight intensities interact to influence anthocyanin biosynthesis and photooxidative sunburn in “Fuji” apple. Frontiers in Plant Science, 12(2): 694-711. https://doi.org/10.3389/fpls.2021.694954
  • Zejak, D., Glisic, I., Spalevic, V., Maskovic, P. and Dudic, B. (2021). Sustainable management of fruit growing in rural areas of Montenegro: the impact of location on the phenological and nutritional properties on raspberry (Rubus idaeus L.). Agronomy, 11(8), 1663. https://doi.org/10.3390/agronomy11081663
  • Zhao, Y., Min, T., Chen, M., Wang, H., Zhu, C., Jin, R., Allan, A. C., Lin-Wang, K. and Xu, C. (2021). The photomorphogenic transcription factor PpHY5 regulates anthocyanin accumulation in response to UVA and UVB irradiation. Frontiers in Plant Science, 11, 603178. https://doi.org/10.3389/fpls.2020.603178
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Meyve Yetiştirme ve Islahı
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Kutalmış Kutsal 0000-0002-9512-4289

Gönderilme Tarihi 12 Ağustos 2025
Kabul Tarihi 16 Aralık 2025
Yayımlanma Tarihi 7 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 23 Sayı: 1

Kaynak Göster

APA Kutsal, İ. K. (2026). Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar. Tekirdağ Ziraat Fakültesi Dergisi, 23(1), 306-318. https://doi.org/10.33462/jotaf.1763280
AMA Kutsal İK. Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar. JOTAF. Ocak 2026;23(1):306-318. doi:10.33462/jotaf.1763280
Chicago Kutsal, İbrahim Kutalmış. “Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar”. Tekirdağ Ziraat Fakültesi Dergisi 23, sy. 1 (Ocak 2026): 306-18. https://doi.org/10.33462/jotaf.1763280.
EndNote Kutsal İK (01 Ocak 2026) Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar. Tekirdağ Ziraat Fakültesi Dergisi 23 1 306–318.
IEEE İ. K. Kutsal, “Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar”, JOTAF, c. 23, sy. 1, ss. 306–318, 2026, doi: 10.33462/jotaf.1763280.
ISNAD Kutsal, İbrahim Kutalmış. “Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar”. Tekirdağ Ziraat Fakültesi Dergisi 23/1 (Ocak2026), 306-318. https://doi.org/10.33462/jotaf.1763280.
JAMA Kutsal İK. Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar. JOTAF. 2026;23:306–318.
MLA Kutsal, İbrahim Kutalmış. “Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar”. Tekirdağ Ziraat Fakültesi Dergisi, c. 23, sy. 1, 2026, ss. 306-18, doi:10.33462/jotaf.1763280.
Vancouver Kutsal İK. Effects of Altitude on Pomological Traits, Bioactive Composition, and Antioxidant Capacity of ‘Çataloğlu’ Apricot Cultivar. JOTAF. 2026;23(1):306-18.