BibTex RIS Kaynak Göster

Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation

Yıl 2006, Cilt: 3 Sayı: 2, 129 - 137, 01.06.2006

Öz

Kaynakça

  • Abbasi, F., J. Feyen, R. L. Roth, M. Sheedy and M. T. van Genuchten, 2003a. Water flow and solute transport in furrow-irrigated fields. Irrigation Abbasi, F., J. Feyen and M. T. van Genuchten, Science 22: 57-65.
  • Abbasi F., F. J. Adamsen, D. J. Hunsaker, J. Feyen, P. Shouse and M. T. van Genuchten, 2003b. Effects of flow depth on water flow and solute transport in furrow irrigation: Field data analysis. Journal of Irrigation and Drainage Engineering- ASCE 129: 237-246.
  • Abbasi, F., M. M. Shooshtari and J. Feyen, 2003c. Evaluation of various surface irrigation Alvarez, J. A. R. 2003. Estimation of advance and numerical simulation models. Journal of Irrigation and Drainage Engineering-ASCE 129: 208-213. 2004. Two-dimensional simulation of water flow and solute transport below furrows: model calibration and validation. Journal of Hydrology 290: 63-79.
  • Alazba, A. A. 1999. Simulating furrow irrigation with different inflow patterns. Journal of Irrigation and Drainage Engineering-ASCE 125: 12-18. infiltration equations in furrow irrigation for untested discharges. Agricultural Water Management 60: 227-239.
  • Anonymous, 1998. Ergene Havzası Yeraltı Suyu Etütleri. Devlet Su İşleri. Ankara.
  • Bassett, D. L. 1972. Mathematical model of water advance in border irrigation. Transactions of the ASAE 15: 992-995.
  • Bautista, E. and W. W. Wallender, 1993.Optimal management strategies for cutback furrow irrigation Journal of Irrigation and Drainage Engineering-ASCE 119: 1099-1114.
  • Clemmens, A. J. 1999. Kostiakov infiltration parameters from kinematics wave model – Discussion Journal of Irrigation and Drainage Engineering-ASCE 125: 386-387.
  • Delibas, L. 1991. A new technique to measurement infiltration. Technical Bulletin of Turkish State Hydraulic Works 74, pp: 51-56.
  • Esfandiari, M., B. L. Maheshwari and P. S. Cornish, 1997. Estimating recession times in furrows with small longitudinal slope on a clay soil. Agricultural Water Management 34: 187-193.
  • Esfandiari, M. and B. L. Maheshwari, 2001. Field evaluation of furrow irrigation models. Journal of Agricultural Engineering Research 79: 459- 479.
  • Fok, Y. S. and A. A. Bishop, 1965. Analysis of water advance in surface irrigation. Journal of Irrigation and Drainage Engineering-ASCE 91: 99-116.
  • Garcia-Navarro, P., A. Sanchez, N. Clavero and E. Playan, 2004. Simulation model for level furrows. II: Description, validation, and application. Journal of Irrigation and Drainage Engineering-ASCE 130: 113-121.
  • Hart, W. E., D. L. Bassett and T. Strelkoff, 1968. Surface irrigation hydraulics-kinematics. Journal of Irrigation and Drainage Engineering-ASCE 94: 419-440.
  • Holzapfel, E. A., J. Jara, C. Zuniga, M. A Marino, J. Paredes and M. Billib, 2004. Infiltration parameters for furrow irrigation. Agricultural Water Management 68: 19-32.
  • Jurriens, M., K. J. Lenselink, 2001. Straightforward furrow irrigation can be 70% efficient. Irrigation and Drainage 50: 195-204.
  • Lillevik, S. L. 1982. Discrete-time, cutback furrow irrigation. Transactions of the ASAE 25: 1646- 1650.
  • McClymont, D. J. and R. J. Smith, 1996. Infiltration parameters from optimization on furrow irrigation advance data. Irrigation Science 17: 15-22.
  • Playan, E., J.A. Rodriguez and Garcia-Navarro, 2004. Simulation model for level furrows. I: Analysis of field experiments. Journal of Irrigation and Drainage Engineering-ASCE 130: 106-112.
  • Postel, S. 1997. Last Oasis: Facing Water Scarcity. W. W. Norton and Co inc (2nd ed.). Washington. 218p.
  • Prinz, D. 2004. Water and development (the challenge ahead). Water Resources Management: Risks and Challenges for the 21st Century. EWRA Symposium, September 2-4, 2004 Izmir, Turkey.
  • Scaloppi, E. J., G. P. Merkley and L. S. Willardson, 1995. Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering-ASCE 121: 57-70.
  • Shiklomanow, I. A. 2000. Appraisal and assessment of world water resources. Water International, 25: 11-32.
  • UN/WWAP, 2003. UN World Water Development Report. Water for People, Water for Life. UNESCO, Berghahn Books.
  • Upadhyaya, S. K. and N. S. Raghuwanshi, 1999. Semi-empirical infiltration equation for furrow irrigation systems. Journal of Irrigation and Drainage Engineering-ASCE 125: 173-178.
  • Valiantzas, J.D. 2001. Optimal furrow design. II: Explicit calculation of design variables. Journal of Irrigation and Drainage Engineering-ASCE 127: 209-215.
  • Wilke, O. C. and E. T. Smerdon, 1965. A Solution of the Irrigation Advance Problem. Journal of Irrigation and Drainage-ASCE 91: 23-34.
  • Wohling, T., R. Singh and G. H. Schmitz, 2004a. Physically based modeling of interacting surface-subsurface flow during furrow irrigation advance. Journal of Irrigation and Drainage Engineering-ASCE 130: 349-356.
  • Wohling, T., G. H. Schmitz and J.C. Mailhol, 2004b. Modeling two-dimensional infiltration from irrigation furrows. Journal of Irrigation and Drainage Engineering-ASCE 130: 296-303.

Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation

Yıl 2006, Cilt: 3 Sayı: 2, 129 - 137, 01.06.2006

Öz

Kök bölgesinde ihtiyaç duyulan net su miktarının infiltrasyonu için gerekli zamanın, suyun karığın aşağı ucuna ulaşması için geçen zamana oranı olarak tanımlanan zaman oranı maksimum sulama randımanını sağlayacak karık uzunluğunun belirlenmesinde en önemli parametredir. Bu çalışmada, karık sulamada maksimum sulama randımanını sağlamak için gerekli optimum zaman oranını belirleyecek bir model geliştirilmiştir. Model, patates yetiştirilen 0.75 m genişliğindeki, 120 m uzunluğundaki, üç farklı eğimdeki (% 0.5, 1.0 ve 1.5) karıklarda ve her bir eğim için üç farklı debide (sırasıyla 0.75, 1.0 ve 1.25 l/s; 0.4, 0.5 ve 0.6 l/s; 0.3, 0.4 ve 0.5 l/s) test edilmiştir. Her bir debi için karıktaki suyun ilerleme ve çekilme hızlarını belirlemek amacıyla karıklar boyunca 10 m aralıklarla istasyonlar çakılmıştır. Ortalama bir tarım toprağı için % 64 uygulama randımanı elde edilmiştir. Düşük infiltrasyon oranında maksimum uygulama randımanı elde etmek için daha kısa; yüksek infiltrasyon oranlarında ise daha küçük karık boyu seçilmesi gerektiği sonucuna varılmıştır

Kaynakça

  • Abbasi, F., J. Feyen, R. L. Roth, M. Sheedy and M. T. van Genuchten, 2003a. Water flow and solute transport in furrow-irrigated fields. Irrigation Abbasi, F., J. Feyen and M. T. van Genuchten, Science 22: 57-65.
  • Abbasi F., F. J. Adamsen, D. J. Hunsaker, J. Feyen, P. Shouse and M. T. van Genuchten, 2003b. Effects of flow depth on water flow and solute transport in furrow irrigation: Field data analysis. Journal of Irrigation and Drainage Engineering- ASCE 129: 237-246.
  • Abbasi, F., M. M. Shooshtari and J. Feyen, 2003c. Evaluation of various surface irrigation Alvarez, J. A. R. 2003. Estimation of advance and numerical simulation models. Journal of Irrigation and Drainage Engineering-ASCE 129: 208-213. 2004. Two-dimensional simulation of water flow and solute transport below furrows: model calibration and validation. Journal of Hydrology 290: 63-79.
  • Alazba, A. A. 1999. Simulating furrow irrigation with different inflow patterns. Journal of Irrigation and Drainage Engineering-ASCE 125: 12-18. infiltration equations in furrow irrigation for untested discharges. Agricultural Water Management 60: 227-239.
  • Anonymous, 1998. Ergene Havzası Yeraltı Suyu Etütleri. Devlet Su İşleri. Ankara.
  • Bassett, D. L. 1972. Mathematical model of water advance in border irrigation. Transactions of the ASAE 15: 992-995.
  • Bautista, E. and W. W. Wallender, 1993.Optimal management strategies for cutback furrow irrigation Journal of Irrigation and Drainage Engineering-ASCE 119: 1099-1114.
  • Clemmens, A. J. 1999. Kostiakov infiltration parameters from kinematics wave model – Discussion Journal of Irrigation and Drainage Engineering-ASCE 125: 386-387.
  • Delibas, L. 1991. A new technique to measurement infiltration. Technical Bulletin of Turkish State Hydraulic Works 74, pp: 51-56.
  • Esfandiari, M., B. L. Maheshwari and P. S. Cornish, 1997. Estimating recession times in furrows with small longitudinal slope on a clay soil. Agricultural Water Management 34: 187-193.
  • Esfandiari, M. and B. L. Maheshwari, 2001. Field evaluation of furrow irrigation models. Journal of Agricultural Engineering Research 79: 459- 479.
  • Fok, Y. S. and A. A. Bishop, 1965. Analysis of water advance in surface irrigation. Journal of Irrigation and Drainage Engineering-ASCE 91: 99-116.
  • Garcia-Navarro, P., A. Sanchez, N. Clavero and E. Playan, 2004. Simulation model for level furrows. II: Description, validation, and application. Journal of Irrigation and Drainage Engineering-ASCE 130: 113-121.
  • Hart, W. E., D. L. Bassett and T. Strelkoff, 1968. Surface irrigation hydraulics-kinematics. Journal of Irrigation and Drainage Engineering-ASCE 94: 419-440.
  • Holzapfel, E. A., J. Jara, C. Zuniga, M. A Marino, J. Paredes and M. Billib, 2004. Infiltration parameters for furrow irrigation. Agricultural Water Management 68: 19-32.
  • Jurriens, M., K. J. Lenselink, 2001. Straightforward furrow irrigation can be 70% efficient. Irrigation and Drainage 50: 195-204.
  • Lillevik, S. L. 1982. Discrete-time, cutback furrow irrigation. Transactions of the ASAE 25: 1646- 1650.
  • McClymont, D. J. and R. J. Smith, 1996. Infiltration parameters from optimization on furrow irrigation advance data. Irrigation Science 17: 15-22.
  • Playan, E., J.A. Rodriguez and Garcia-Navarro, 2004. Simulation model for level furrows. I: Analysis of field experiments. Journal of Irrigation and Drainage Engineering-ASCE 130: 106-112.
  • Postel, S. 1997. Last Oasis: Facing Water Scarcity. W. W. Norton and Co inc (2nd ed.). Washington. 218p.
  • Prinz, D. 2004. Water and development (the challenge ahead). Water Resources Management: Risks and Challenges for the 21st Century. EWRA Symposium, September 2-4, 2004 Izmir, Turkey.
  • Scaloppi, E. J., G. P. Merkley and L. S. Willardson, 1995. Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering-ASCE 121: 57-70.
  • Shiklomanow, I. A. 2000. Appraisal and assessment of world water resources. Water International, 25: 11-32.
  • UN/WWAP, 2003. UN World Water Development Report. Water for People, Water for Life. UNESCO, Berghahn Books.
  • Upadhyaya, S. K. and N. S. Raghuwanshi, 1999. Semi-empirical infiltration equation for furrow irrigation systems. Journal of Irrigation and Drainage Engineering-ASCE 125: 173-178.
  • Valiantzas, J.D. 2001. Optimal furrow design. II: Explicit calculation of design variables. Journal of Irrigation and Drainage Engineering-ASCE 127: 209-215.
  • Wilke, O. C. and E. T. Smerdon, 1965. A Solution of the Irrigation Advance Problem. Journal of Irrigation and Drainage-ASCE 91: 23-34.
  • Wohling, T., R. Singh and G. H. Schmitz, 2004a. Physically based modeling of interacting surface-subsurface flow during furrow irrigation advance. Journal of Irrigation and Drainage Engineering-ASCE 130: 349-356.
  • Wohling, T., G. H. Schmitz and J.C. Mailhol, 2004b. Modeling two-dimensional infiltration from irrigation furrows. Journal of Irrigation and Drainage Engineering-ASCE 130: 296-303.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

F. Konukcu L. Delibas Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2006
Gönderilme Tarihi 2 Kasım 2014
Yayımlandığı Sayı Yıl 2006 Cilt: 3 Sayı: 2

Kaynak Göster

APA Delibas, F. K. L. (2006). Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation. Tekirdağ Ziraat Fakültesi Dergisi, 3(2), 129-137.
AMA Delibas FKL. Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation. JOTAF. Haziran 2006;3(2):129-137.
Chicago Delibas, F. Konukcu L. “Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation”. Tekirdağ Ziraat Fakültesi Dergisi 3, sy. 2 (Haziran 2006): 129-37.
EndNote Delibas FKL (01 Haziran 2006) Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation. Tekirdağ Ziraat Fakültesi Dergisi 3 2 129–137.
IEEE F. K. L. Delibas, “Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation”, JOTAF, c. 3, sy. 2, ss. 129–137, 2006.
ISNAD Delibas, F. Konukcu L. “Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation”. Tekirdağ Ziraat Fakültesi Dergisi 3/2 (Haziran 2006), 129-137.
JAMA Delibas FKL. Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation. JOTAF. 2006;3:129–137.
MLA Delibas, F. Konukcu L. “Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation”. Tekirdağ Ziraat Fakültesi Dergisi, c. 3, sy. 2, 2006, ss. 129-37.
Vancouver Delibas FKL. Optimum Time Ratio for Maximum Application Efficiency in Furrow Irrigation. JOTAF. 2006;3(2):129-37.