Araştırma Makalesi
BibTex RIS Kaynak Göster

Fertility Status of Agricultural Soils in İstanbul Province

Yıl 2024, Cilt: 21 Sayı: 5, 1336 - 1350
https://doi.org/10.33462/jotaf.1540727

Öz

As a region of geopolitical significance and industrialization, İstanbul province has a traditional production system in which intensive agricultural production is carried out, especially in Silivri and Çatalca districts, where sunflower and wheat agriculture is carried out in alternation under irrigated conditions due to sufficient rainfall. These agricultural areas, which are also under intense urbanization pressure, need to be protected in order to be used sustainably. For this purpose, it is a priority to determine the current productivity status of agricultural areas. There is no study in the literature that reveals the current agricultural productivity status of İstanbul province. In this study, some physical and chemical soil properties of the agricultural areas where the same agricultural production system has been practiced for many years were determined in terms of sustainable agriculture. In order to determine these soil properties, surface soil sampling (0-20 cm) was carried out according to the grid system at 2.5 × 2.5 km intervals covering all agricultural areas and a total of 196 soil samples were taken and the field study was completed. All soil samples were analyzed for texture, pH, EC, organic matter, available phosphorus, available potassium and the current fertility status of the agricultural areas in the province of İstanbul was determined. According to the results of the research, the agricultural soils of İstanbul province are generally medium-heavy and heavy textured, medium alkaline and neutral pH, without salinity problems, 50% of them have very low CaCO3 content and the rest are calcareous soils with varying levels of CaCO3. It was determined that the high CaCO3 content in 11% of the soils was due to the rendzina great soil group formed on marl parent material. In terms of organic matter, 59% were classified as low, 26% as moderate, 50% as high and very high in terms of available phosphorus, and 79% as high and very high in terms of extractable potassium. After the classification of all analyzed parameters, the distribution maps of a parameter were created by using Geographical Information Systems (GIS). IDW, which is an inverse distance weighting method widely used in soil science, was used to create the distribution maps.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study

Destekleyen Kurum

TAGEM (General Directorate of Agricultural Research and Policies)

Proje Numarası

TAGEM/TSKAD/17/A09/P02/07

Teşekkür

The authors would like to express their gratitude to TAGEM (General Directorate of Agricultural Research and Policies) for providing the necessary facilities for conducting this research.

Kaynakça

  • Abdollahi, L., Hansen, E. M., Rickson, R. J. and Munkholm, L. J. (2015). Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage. Soil and Tillage Research, 145: 29-36.
  • Akbay, C., Aytop, H. and Dikici, H. (2023). Evaluation of radioactive and heavy metal pollution in agricultural soil surrounding the lignite-fired thermal power plant using pollution indices. International Journal of Environmental Health Research, 33(12): 1490-1501.
  • Aktaş, T. and Yüksel, O. (2020). Effects of vermicompost on aggregate stability, bulk density and some chemical characteristics of soils with different textures. Journal of Tekirdag Agricultural Faculty, 17(1): 1-11. https://doi.org/10.33462/jotaf.598809
  • Alharbi, A. (2015). Impact of soil salinity on agriculture in arid regions. Journal of Islamic Sciences, 8: 71-81. https://doi.org/10.12816/0023974
  • Ali, M., Petropoulos, S., Selim, D., Elbagory, M., Othman, M., Omara, A. and Mohamed, M. (2021). Plant growth, yield and quality of potato crop in relation to potassium fertilization. Agronomy, 11: 675. https://doi.org/10.3390/AGRONOMY11040675
  • Alaboz, P., Demir, S. and Dengiz, O. (2020). Determination of spatial distribution of soil moisture constant using different interpolation model case study, Isparta Atabey Plain. Journal of Tekirdag Agricultural Faculty, 17(3): 432-444. https://doi.org/10.33462/jotaf.710411
  • Ameyu, T. (2019). A review on the potential effect of lime on soil properties and crop productivity improvements. Journal of Environment and Earth Science, 9(2): 17-23. https://doi.org/10.7176/jees/9-2-03
  • Andrews S.S. and Carroll C.R. (2001). Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications, 11(6): 1573-1585.
  • Anonim (2011). T.C İstanbul Metropolitan Municipality, department of earthquake risk management and urban improvement, earthquake and soil investigation directorate, Istanbul City Geology Project.
  • Atav, V., Yüksel, O., Namlı, A. and Gürbüz, M. A. (2024). Biogas liquid digestate application: influence on soil microbial biomass and CO2 respiration. Journal of Material Cycles and Waste Management, 26(6): 3525-3534.
  • Atmaca, B. and Boyraz Erdem, D. (2016). Properties of soils in some streambeds in Tekirdağ central district. Toprak Su Dergisi, 5(1): 1-7. https://doi.org/10.21657/tsd.06716
  • Aytop, H. (2023). Evaluation of environmental and ecological risks caused by metals in agricultural areas: an example in the Amik Plain of South Türkiye. International Journal of Environmental Health Research, 33(12): 1418-1429.
  • Barman, M., Shukla, L. M., Datta, S. P. and Rattan, R. K. (2014). Effect of applied lime and boron on the availability of nutrients in an acid soil. Journal of Plant Nutrition, 37(3): 357–373. https://doi.org/10.1080/01904167.2013.859698
  • Başar, H. (2001). A study on determination of fertility status of the soils by soil analysis in the Bursa province. Journal of Uludağ University Agricultural Faculty, 15(2): 69-83
  • Bingham, F. and Martin, J. (1956). Effects of soil phosphorus on growth and minor element nutrition of citrus. Soil Science Society of America Journal, 20: 382-385. https://doi.org/10.2136/SSSAJ1956.03615995002000030023X
  • Brady, N. C. and Weil, R. R. (2002). The Nature and Properties of Soils. 13th (ed) Prentice Hall International. New Jersey, U.S.A.
  • Caritat, P., Cooper, M. and Wilford, J. (2011). The pH of Australian soils: field results from a national survey. Soil Research, 49: 173-182. https://doi.org/10.1071/SR10121
  • Chan, C., Liao, Y. and Chiou, T. (2021). The impact of phosphorus on plant immunity. Plant and Cell Physiology, 62(4): 582–589. https://doi.org/10.1093/pcp/pcaa168
  • Corbett, D., Wall, D., Lynch, M. and Tuohy, P. (2021). The influence of lime application on the chemical and physical characteristics of acidic grassland soils with impeded drainage. The Journal of Agricultural Science, 159: 206-215. https://doi.org/10.1017/S0021859621000381
  • Dotaniya, M. L., Meena, V. D., Basak, B. B. and Meena, R. S. (2016). Potassium Uptake by Crops as well as Microorganisms. In: Potassium Solubilizing Microorganisms for Sustainable Agriculture, Eds: Meena, V. S., Maurya, B. R., Verma, J. P. and Meena, R. S., Springer, India.
  • De Lima, A. C. R. (2007). Soil quality assessment in rice production systems (PhD Thesis) Wageningen University, Wageningen, Holland.
  • Doran, J. W. and Parkin, T. B. (1994). Defining and Assessing Soil Quality. In: Defining Soil Quality for A Sustainable Environment Eds: Doran, J. W., Coleman, D. C., Bezdicek, D. F. and Stewart, B. A., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/sssaspecpub35.c1
  • Etesami, H. (2019). Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. In: Nutrient Dynamics for Sustainable Crop Production. Eds: Meena, R. S. Springer Nature Singapore. https://doi.org/10.1007/978-981-13-8660-2_8
  • Fageria, N. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 43: 2063 - 2113. https://doi.org/10.1080/00103624.2012.697234
  • Gee, G. W. and Bauder, J. W. (1986). Particle-Size Analysis. Methods of Soil Analysis Part 1, Physical and Mineralogical Methods Soil Science Society of America and American society of Agronomy, 677 S.Segoe Rd., Madison, WI 53711, U.S.A.
  • Gupta, B. K. (2007). Soil, Plant, Water and Fertilizer Analysis. Agrobios, India.
  • Gürbüz, M. A., Kayalı, E., Bahar, E. and Kardeş, T. A. (2018). Determination of plant nutrient and potential toxic element content of Trakya region agricultural soils, constitution and mapping of database. TAGEM, Project Final Report.
  • Gürbüz, M. A., Kayalı, E., Bahar, E. and Kardeş, T. A. (2023). Micronutrient element contents of agricultural soils in Edirne. Journal of Soil Science and Plant Nutrition, 11(2): 144-153.
  • Haynes, R. and Naidu, R. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutrient Cycling in Agroecosystems, 51: 123-137. https://doi.org/10.1023/A:1009738307837
  • He, B., Xue, C., Sun, Z., Ji, Q., Wei, J. and Ma, W. (2022). Effect of different long-term potassium dosages on crop yield and potassium use efficiency in the maize–wheat rotation system. Agronomy, 12(10): 2565. https://doi.org/10.3390/agronomy12102565
  • Kayalı, E. and Yüksel, O. (2020). Preparation of database of agricultural soils of İstanbul province and determination of spatial variation of some soil properties, TAGEM Project Final Report.
  • Larson, W. E. and Pierce, F. J. (1994). The Dynamics of Soil Quality as a Measure of Sustainable Management. In: Defining Soil Quality for A Sustainable Environment Eds: Doran, J. W., Coleman, D. C., Bezdicek, D. F. and Stewart, B. A., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/sssaspecpub35.c
  • Loeppert, R. H. and Suarez. D. L. (1996). Carbonate and Gypsum. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Eds: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E., SSSA Special Publications, U.S.A. https://doi.org/10.2136/sssabookser5.3.c15
  • López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M. and García-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246: 97-105.
  • Machado, R. and Serralheiro, R. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticultura, 3(2): 30. https://doi.org/10.3390/horticulturae3020030 MGM (2022). Climate of Türkiye. https://www.mgm.gov.tr/iklim/turkiye-iklimi.aspx (Accessed Date: 10.05.2023)
  • Miranda, J., Harris, P. and Wild, A. (1989). Effects of soil and plant phosphorus concentrations on vesicular-arbuscular mycorrhiza in sorghum plants. New Phytologist, 112: 405-410. https://doi.org/10.1111/J.1469-8137.1989.TB00330.X
  • Nanu, I. and Radulov, I. (2013). Changes in soil potassium content after mineral fertilization. Research Journal of Agricultural Science, 45 (4): 134-139.
  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science. 2019: 5794869. https://doi.org/10.1155/2019/5794869
  • Nelson, D.W. and Sommers, L.E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Eds: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/sssabookser5.3.c34
  • Nkana, J., Tack, F. and Verloo, M. (2001). Availability and plant uptake of nutrients following the application of paper pulp and lime to tropical acid soils. Journal of Plant Nutrition and Soil Science, 164: 329-334. https://doi.org/10.1002/1522-2624(200106)164:3<329
  • Oldfield, E., Wood, S. and Bradford, M. (2018). Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant and Soil, 423: 363-373. https://doi.org/10.1007/s11104-017-3513-5 Oshunsanya, S. (2018). Introductory Chapter: Relevance of Soil pH to Agriculture. In: Soil pH for Nutrient Availability and Crop Performance. Eds: Oshunsanya, S. IntechOpen. https://doi.org/10.5772/INTECHOPEN.82551
  • Olsen, S. R. and Sommers, E. L. (1982). Phosphorus. In: Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, Second Edition. Eds: Page, A. L. Agronomy Monographs, ASA, CSSA, SSSA Books, U.S.A https://doi.org/10.2134/agronmonogr9.2.2ed.c24
  • Özden, N., Uslu, İ., Sökmen, Ö., Aras, S., Şen, O.F., Şen, S., Candan, N., Metinoğlu, F., Rahmanoğlu, N. and Göçmez, S. (2018). Determination of plant nutrient and potential toxic element content of İzmir, Manisa and Aydın districts agricultural soils, constitution and mapping of database. TAGEM Project Final Report.
  • Özden, N., Sökmen, Ö., Uslu, İ. and Aras, S. (2022). Determination and mapping of fertility status and microelement contents of agricultural soils in Manisa province. Anadolu Journal of Aegean Agricultural Research Institute, 32(2): 228-241. https://doi.org/10.18615/anadolu.1225168
  • Pettigrew, W. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 133(4): 670-81. https://doi.org/10.1111/j.1399-3054.2008.01073.x
  • Richardson, A., Hocking, P., Simpson, R. and George, T. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60: 124-143. https://doi.org/10.1071/CP07125
  • Sarkar, D. (2005). Soil Phosphorus Availability and Its Impact on Surface Water Quality, Oil Phosphorus Availability and Its Impact on Surface Water Quality. In: Water Encyclopedia. Eds: Lehr J. H. and Keeley, John Wiley & Sons, Inc, New York, U.S.A. https://doi.org/10.1002/047147844X.AW336
  • Sharma, S., Sayyed, R., Trivedi, M. and Gobi, T. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2: 587. https://doi.org/10.1186/2193-1801-2-587
  • Sharpley, A. and Menzel, R. (1987). The impact of soil and fertilizer phosphorus on the environment. Advances in Agronomy, 41: 297-324. https://doi.org/10.1016/S0065-2113(08)60807-X
  • Sharpley, A. (1995). Soil phosphorus dynamics: agronomic and environmental impacts. Ecological Engineering, 5: 261-279. https://doi.org/10.1016/0925-8574(95)00027-5
  • Shrivastava, P. and Kumar, R. (2014). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123 - 131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Soil Survey Staff (1993). Soil Survey Manual. United States Dep. of Agriculture, Handbook No.18, Washington D.C., U.S.A.
  • Sönmez, B., Özbahçe, A., Akgül, S. and Keçeci, M. (2018). Creating a geographical database of some fertility and organic carbon (TOC) content of Türkiye soils. TAGEM Project Final Report.
  • Syers, J. (1997). Managing soils for long-term productivity. Philosophical Transactions of the Royal Society B, 352: 1011-1021. https://doi.org/10.1098/RSTB.1997.0079
  • Taşova, H. and Akın, A. (2013). Determining, mapping and creating a database of soil nutrients in Marmara Region. Journal of Soil Water, 2(2): 83-95.
  • Thomas, G. (1996). Soil pH and Soil Acidity. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Eds: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/SSSABOOKSER5.3.C16
  • TÜİK (2024). Turkish Statistical Institute. https://www.tuik.gov.tr/ (Accesed Date: 23.09.2024)
  • Uyguçgil, H. (2007). The use of geostatistics and geographic information systems techniques in reserve grade estimation in multivariate mineral deposits. (PhD Thesis) Osmangazi University, Eskişehir, Türkiye.
  • Vadas, P. and Sims, J. (2013). Soil Fertility: Phosphorus in Soils. In: Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.09116-8
  • Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline‐sodic conditions. Journal of Plant Nutrition and Soil Science, 176(3): 344-354.
  • Wang, Y., Ji, H., Wang, R. and Guo, S. (2019). Responses of nitrification and denitrification to nitrogen and phosphorus fertilization: does the intrinsic soil fertility matter? Plant and Soil, 440: 443-456.
  • Zhao, J., Dong, Y., Xie, X., Li, X., Zhang, X. and Shen, X. (2011). Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecologica Sinica, 31: 212-216. https://doi.org/10.1016/J.CHNAES.2011.04.001
  • Zhao, Y., He, X., Huang, X., Zhang, Y. and Shi, X. (2016). Increasing soil organic matter enhances inherent soil productivity while offsetting fertilization effect under a rice cropping system. Sustainability, 8: 879. https://doi.org/10.3390/SU8090879

İstanbul İli Tarım Topraklarının Temel Verimlilik Durumu

Yıl 2024, Cilt: 21 Sayı: 5, 1336 - 1350
https://doi.org/10.33462/jotaf.1540727

Öz

İstanbul ili, jeopolitik önemi ve sanayileşmenin yanı sıra, özellikle Silivri ve Çatalca ilçelerinde yoğun tarımsal üretimin gerçekleştirildiği, yağışların yeterli olması sayesinde ayçiçeği ve buğday tarımının susuz koşullarda münavebe şeklinde sürdürüldüğü gelenekselleşmiş bir üretim sistemine sahiptir. Aynı zamanda yoğun şehirleşme baskısı altında da olan bu tarım alanlarının, sürdürülebilir bir şekilde kullanılabilmesi için korunması gerekmektedir. Bunun içinde tarım alanlarının mevcut verimlilik durumlarının belirlenmesi önceliklidir. Literatürde İstanbul ilinin mevcut tarımsal durumunu ortaya koyan herhangi bir çalışmaya rastlanmamıştır. Bu çalışma ile uzun yıllar boyunca aynı tarımsal üretim şeklinin uygulandığı bu tarım alanlarının sürdürülebilirliği açısından bazı fiziksel ve kimyasal toprak özelliklerini mevcut durumlarının belirlemek amaçlanmıştır. Bu toprak özelliklerini belirlemek için tüm tarım alanlarını kapsayacak şekilde 2,5 × 2,5 km aralıklarla grid sistemine göre yüzey toprak örneklemesi (0-20 cm) gerçekleştirilmiş ve toplam 196 adet toprak örneği alınarak arazi çalışması tamamlanmıştır. Alınan tüm toprak örneklerinde bünye, pH, EC, organik madde, alınabilir fosfor ve alınabilir potasyum analizleri yapılarak İstabul ili tarım alanlarının mevcut verimlilik durumu ortaya konmuştur. Araştırma sonuçlarına göre, İstanbul ili tarım toprakları genellikle orta-ağır ve ağır bünyeli, orta alkali ve nötr pH’a sahip, tuzluluk sorunu olmayan, %50’si kireçsiz iken kalanı değişen oranlarda kireçli topraklardır. Toprakların özellikle %11’inde yüksek kireç içeriğinin, marn ana materyal üzerinde oluşmuş rendzina büyük toprak grubundan kaynaklı olduğu belirlenmiştir. Organik madde bakımından %59’u az, %26’sı orta; alınabilir fosfor bakımından %55’i yüksek ve çok yüksek; ekstrakte edilebilir potasyum bakımından ise %79’u zengin ve çok zengin sınıfa girmektedir. Tüm analiz parametrelerinin sınıflandırılmasının ardından bir parametreye ait dağılım haritaları Coğrafi Bilgi Sistemleri (CBS) kullanılarak oluşturulmuştur. Dağılım haritalarının oluşturulmasından toprak biliminde yaygın olarak kullanılan ters mesafe ağırlık yöntemi olan IDW kullanılmıştır.

Etik Beyan

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

Destekleyen Kurum

TAGEM (Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü)

Proje Numarası

TAGEM/TSKAD/17/A09/P02/07

Teşekkür

Yazarlar, bu araştırmanın yürütülmesi için gerekli olanakları sağlayan TAGEM'e (Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü) teşekkür etmektedir.

Kaynakça

  • Abdollahi, L., Hansen, E. M., Rickson, R. J. and Munkholm, L. J. (2015). Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage. Soil and Tillage Research, 145: 29-36.
  • Akbay, C., Aytop, H. and Dikici, H. (2023). Evaluation of radioactive and heavy metal pollution in agricultural soil surrounding the lignite-fired thermal power plant using pollution indices. International Journal of Environmental Health Research, 33(12): 1490-1501.
  • Aktaş, T. and Yüksel, O. (2020). Effects of vermicompost on aggregate stability, bulk density and some chemical characteristics of soils with different textures. Journal of Tekirdag Agricultural Faculty, 17(1): 1-11. https://doi.org/10.33462/jotaf.598809
  • Alharbi, A. (2015). Impact of soil salinity on agriculture in arid regions. Journal of Islamic Sciences, 8: 71-81. https://doi.org/10.12816/0023974
  • Ali, M., Petropoulos, S., Selim, D., Elbagory, M., Othman, M., Omara, A. and Mohamed, M. (2021). Plant growth, yield and quality of potato crop in relation to potassium fertilization. Agronomy, 11: 675. https://doi.org/10.3390/AGRONOMY11040675
  • Alaboz, P., Demir, S. and Dengiz, O. (2020). Determination of spatial distribution of soil moisture constant using different interpolation model case study, Isparta Atabey Plain. Journal of Tekirdag Agricultural Faculty, 17(3): 432-444. https://doi.org/10.33462/jotaf.710411
  • Ameyu, T. (2019). A review on the potential effect of lime on soil properties and crop productivity improvements. Journal of Environment and Earth Science, 9(2): 17-23. https://doi.org/10.7176/jees/9-2-03
  • Andrews S.S. and Carroll C.R. (2001). Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications, 11(6): 1573-1585.
  • Anonim (2011). T.C İstanbul Metropolitan Municipality, department of earthquake risk management and urban improvement, earthquake and soil investigation directorate, Istanbul City Geology Project.
  • Atav, V., Yüksel, O., Namlı, A. and Gürbüz, M. A. (2024). Biogas liquid digestate application: influence on soil microbial biomass and CO2 respiration. Journal of Material Cycles and Waste Management, 26(6): 3525-3534.
  • Atmaca, B. and Boyraz Erdem, D. (2016). Properties of soils in some streambeds in Tekirdağ central district. Toprak Su Dergisi, 5(1): 1-7. https://doi.org/10.21657/tsd.06716
  • Aytop, H. (2023). Evaluation of environmental and ecological risks caused by metals in agricultural areas: an example in the Amik Plain of South Türkiye. International Journal of Environmental Health Research, 33(12): 1418-1429.
  • Barman, M., Shukla, L. M., Datta, S. P. and Rattan, R. K. (2014). Effect of applied lime and boron on the availability of nutrients in an acid soil. Journal of Plant Nutrition, 37(3): 357–373. https://doi.org/10.1080/01904167.2013.859698
  • Başar, H. (2001). A study on determination of fertility status of the soils by soil analysis in the Bursa province. Journal of Uludağ University Agricultural Faculty, 15(2): 69-83
  • Bingham, F. and Martin, J. (1956). Effects of soil phosphorus on growth and minor element nutrition of citrus. Soil Science Society of America Journal, 20: 382-385. https://doi.org/10.2136/SSSAJ1956.03615995002000030023X
  • Brady, N. C. and Weil, R. R. (2002). The Nature and Properties of Soils. 13th (ed) Prentice Hall International. New Jersey, U.S.A.
  • Caritat, P., Cooper, M. and Wilford, J. (2011). The pH of Australian soils: field results from a national survey. Soil Research, 49: 173-182. https://doi.org/10.1071/SR10121
  • Chan, C., Liao, Y. and Chiou, T. (2021). The impact of phosphorus on plant immunity. Plant and Cell Physiology, 62(4): 582–589. https://doi.org/10.1093/pcp/pcaa168
  • Corbett, D., Wall, D., Lynch, M. and Tuohy, P. (2021). The influence of lime application on the chemical and physical characteristics of acidic grassland soils with impeded drainage. The Journal of Agricultural Science, 159: 206-215. https://doi.org/10.1017/S0021859621000381
  • Dotaniya, M. L., Meena, V. D., Basak, B. B. and Meena, R. S. (2016). Potassium Uptake by Crops as well as Microorganisms. In: Potassium Solubilizing Microorganisms for Sustainable Agriculture, Eds: Meena, V. S., Maurya, B. R., Verma, J. P. and Meena, R. S., Springer, India.
  • De Lima, A. C. R. (2007). Soil quality assessment in rice production systems (PhD Thesis) Wageningen University, Wageningen, Holland.
  • Doran, J. W. and Parkin, T. B. (1994). Defining and Assessing Soil Quality. In: Defining Soil Quality for A Sustainable Environment Eds: Doran, J. W., Coleman, D. C., Bezdicek, D. F. and Stewart, B. A., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/sssaspecpub35.c1
  • Etesami, H. (2019). Enhanced Phosphorus Fertilizer Use Efficiency with Microorganisms. In: Nutrient Dynamics for Sustainable Crop Production. Eds: Meena, R. S. Springer Nature Singapore. https://doi.org/10.1007/978-981-13-8660-2_8
  • Fageria, N. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science and Plant Analysis, 43: 2063 - 2113. https://doi.org/10.1080/00103624.2012.697234
  • Gee, G. W. and Bauder, J. W. (1986). Particle-Size Analysis. Methods of Soil Analysis Part 1, Physical and Mineralogical Methods Soil Science Society of America and American society of Agronomy, 677 S.Segoe Rd., Madison, WI 53711, U.S.A.
  • Gupta, B. K. (2007). Soil, Plant, Water and Fertilizer Analysis. Agrobios, India.
  • Gürbüz, M. A., Kayalı, E., Bahar, E. and Kardeş, T. A. (2018). Determination of plant nutrient and potential toxic element content of Trakya region agricultural soils, constitution and mapping of database. TAGEM, Project Final Report.
  • Gürbüz, M. A., Kayalı, E., Bahar, E. and Kardeş, T. A. (2023). Micronutrient element contents of agricultural soils in Edirne. Journal of Soil Science and Plant Nutrition, 11(2): 144-153.
  • Haynes, R. and Naidu, R. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutrient Cycling in Agroecosystems, 51: 123-137. https://doi.org/10.1023/A:1009738307837
  • He, B., Xue, C., Sun, Z., Ji, Q., Wei, J. and Ma, W. (2022). Effect of different long-term potassium dosages on crop yield and potassium use efficiency in the maize–wheat rotation system. Agronomy, 12(10): 2565. https://doi.org/10.3390/agronomy12102565
  • Kayalı, E. and Yüksel, O. (2020). Preparation of database of agricultural soils of İstanbul province and determination of spatial variation of some soil properties, TAGEM Project Final Report.
  • Larson, W. E. and Pierce, F. J. (1994). The Dynamics of Soil Quality as a Measure of Sustainable Management. In: Defining Soil Quality for A Sustainable Environment Eds: Doran, J. W., Coleman, D. C., Bezdicek, D. F. and Stewart, B. A., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/sssaspecpub35.c
  • Loeppert, R. H. and Suarez. D. L. (1996). Carbonate and Gypsum. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Eds: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E., SSSA Special Publications, U.S.A. https://doi.org/10.2136/sssabookser5.3.c15
  • López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez de la Orden, M. and García-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246: 97-105.
  • Machado, R. and Serralheiro, R. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticultura, 3(2): 30. https://doi.org/10.3390/horticulturae3020030 MGM (2022). Climate of Türkiye. https://www.mgm.gov.tr/iklim/turkiye-iklimi.aspx (Accessed Date: 10.05.2023)
  • Miranda, J., Harris, P. and Wild, A. (1989). Effects of soil and plant phosphorus concentrations on vesicular-arbuscular mycorrhiza in sorghum plants. New Phytologist, 112: 405-410. https://doi.org/10.1111/J.1469-8137.1989.TB00330.X
  • Nanu, I. and Radulov, I. (2013). Changes in soil potassium content after mineral fertilization. Research Journal of Agricultural Science, 45 (4): 134-139.
  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science. 2019: 5794869. https://doi.org/10.1155/2019/5794869
  • Nelson, D.W. and Sommers, L.E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Eds: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/sssabookser5.3.c34
  • Nkana, J., Tack, F. and Verloo, M. (2001). Availability and plant uptake of nutrients following the application of paper pulp and lime to tropical acid soils. Journal of Plant Nutrition and Soil Science, 164: 329-334. https://doi.org/10.1002/1522-2624(200106)164:3<329
  • Oldfield, E., Wood, S. and Bradford, M. (2018). Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant and Soil, 423: 363-373. https://doi.org/10.1007/s11104-017-3513-5 Oshunsanya, S. (2018). Introductory Chapter: Relevance of Soil pH to Agriculture. In: Soil pH for Nutrient Availability and Crop Performance. Eds: Oshunsanya, S. IntechOpen. https://doi.org/10.5772/INTECHOPEN.82551
  • Olsen, S. R. and Sommers, E. L. (1982). Phosphorus. In: Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, Second Edition. Eds: Page, A. L. Agronomy Monographs, ASA, CSSA, SSSA Books, U.S.A https://doi.org/10.2134/agronmonogr9.2.2ed.c24
  • Özden, N., Uslu, İ., Sökmen, Ö., Aras, S., Şen, O.F., Şen, S., Candan, N., Metinoğlu, F., Rahmanoğlu, N. and Göçmez, S. (2018). Determination of plant nutrient and potential toxic element content of İzmir, Manisa and Aydın districts agricultural soils, constitution and mapping of database. TAGEM Project Final Report.
  • Özden, N., Sökmen, Ö., Uslu, İ. and Aras, S. (2022). Determination and mapping of fertility status and microelement contents of agricultural soils in Manisa province. Anadolu Journal of Aegean Agricultural Research Institute, 32(2): 228-241. https://doi.org/10.18615/anadolu.1225168
  • Pettigrew, W. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 133(4): 670-81. https://doi.org/10.1111/j.1399-3054.2008.01073.x
  • Richardson, A., Hocking, P., Simpson, R. and George, T. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60: 124-143. https://doi.org/10.1071/CP07125
  • Sarkar, D. (2005). Soil Phosphorus Availability and Its Impact on Surface Water Quality, Oil Phosphorus Availability and Its Impact on Surface Water Quality. In: Water Encyclopedia. Eds: Lehr J. H. and Keeley, John Wiley & Sons, Inc, New York, U.S.A. https://doi.org/10.1002/047147844X.AW336
  • Sharma, S., Sayyed, R., Trivedi, M. and Gobi, T. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2: 587. https://doi.org/10.1186/2193-1801-2-587
  • Sharpley, A. and Menzel, R. (1987). The impact of soil and fertilizer phosphorus on the environment. Advances in Agronomy, 41: 297-324. https://doi.org/10.1016/S0065-2113(08)60807-X
  • Sharpley, A. (1995). Soil phosphorus dynamics: agronomic and environmental impacts. Ecological Engineering, 5: 261-279. https://doi.org/10.1016/0925-8574(95)00027-5
  • Shrivastava, P. and Kumar, R. (2014). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123 - 131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Soil Survey Staff (1993). Soil Survey Manual. United States Dep. of Agriculture, Handbook No.18, Washington D.C., U.S.A.
  • Sönmez, B., Özbahçe, A., Akgül, S. and Keçeci, M. (2018). Creating a geographical database of some fertility and organic carbon (TOC) content of Türkiye soils. TAGEM Project Final Report.
  • Syers, J. (1997). Managing soils for long-term productivity. Philosophical Transactions of the Royal Society B, 352: 1011-1021. https://doi.org/10.1098/RSTB.1997.0079
  • Taşova, H. and Akın, A. (2013). Determining, mapping and creating a database of soil nutrients in Marmara Region. Journal of Soil Water, 2(2): 83-95.
  • Thomas, G. (1996). Soil pH and Soil Acidity. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5.3. Eds: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T. and Sumner, M. E., ASA, CSSA, SSSA Books, U.S.A. https://doi.org/10.2136/SSSABOOKSER5.3.C16
  • TÜİK (2024). Turkish Statistical Institute. https://www.tuik.gov.tr/ (Accesed Date: 23.09.2024)
  • Uyguçgil, H. (2007). The use of geostatistics and geographic information systems techniques in reserve grade estimation in multivariate mineral deposits. (PhD Thesis) Osmangazi University, Eskişehir, Türkiye.
  • Vadas, P. and Sims, J. (2013). Soil Fertility: Phosphorus in Soils. In: Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.09116-8
  • Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline‐sodic conditions. Journal of Plant Nutrition and Soil Science, 176(3): 344-354.
  • Wang, Y., Ji, H., Wang, R. and Guo, S. (2019). Responses of nitrification and denitrification to nitrogen and phosphorus fertilization: does the intrinsic soil fertility matter? Plant and Soil, 440: 443-456.
  • Zhao, J., Dong, Y., Xie, X., Li, X., Zhang, X. and Shen, X. (2011). Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecologica Sinica, 31: 212-216. https://doi.org/10.1016/J.CHNAES.2011.04.001
  • Zhao, Y., He, X., Huang, X., Zhang, Y. and Shi, X. (2016). Increasing soil organic matter enhances inherent soil productivity while offsetting fertilization effect under a rice cropping system. Sustainability, 8: 879. https://doi.org/10.3390/SU8090879
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Besleme ve Toprak Verimliliği, Toprak Etüd ve Haritalama, Toprak Fiziği
Bölüm Makaleler
Yazarlar

Emel Kayalı 0000-0001-7682-3060

Orhan Yüksel 0000-0003-0679-8722

Proje Numarası TAGEM/TSKAD/17/A09/P02/07
Erken Görünüm Tarihi 13 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 29 Ağustos 2024
Kabul Tarihi 10 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 21 Sayı: 5

Kaynak Göster

APA Kayalı, E., & Yüksel, O. (2024). Fertility Status of Agricultural Soils in İstanbul Province. Tekirdağ Ziraat Fakültesi Dergisi, 21(5), 1336-1350. https://doi.org/10.33462/jotaf.1540727
AMA Kayalı E, Yüksel O. Fertility Status of Agricultural Soils in İstanbul Province. JOTAF. Aralık 2024;21(5):1336-1350. doi:10.33462/jotaf.1540727
Chicago Kayalı, Emel, ve Orhan Yüksel. “Fertility Status of Agricultural Soils in İstanbul Province”. Tekirdağ Ziraat Fakültesi Dergisi 21, sy. 5 (Aralık 2024): 1336-50. https://doi.org/10.33462/jotaf.1540727.
EndNote Kayalı E, Yüksel O (01 Aralık 2024) Fertility Status of Agricultural Soils in İstanbul Province. Tekirdağ Ziraat Fakültesi Dergisi 21 5 1336–1350.
IEEE E. Kayalı ve O. Yüksel, “Fertility Status of Agricultural Soils in İstanbul Province”, JOTAF, c. 21, sy. 5, ss. 1336–1350, 2024, doi: 10.33462/jotaf.1540727.
ISNAD Kayalı, Emel - Yüksel, Orhan. “Fertility Status of Agricultural Soils in İstanbul Province”. Tekirdağ Ziraat Fakültesi Dergisi 21/5 (Aralık 2024), 1336-1350. https://doi.org/10.33462/jotaf.1540727.
JAMA Kayalı E, Yüksel O. Fertility Status of Agricultural Soils in İstanbul Province. JOTAF. 2024;21:1336–1350.
MLA Kayalı, Emel ve Orhan Yüksel. “Fertility Status of Agricultural Soils in İstanbul Province”. Tekirdağ Ziraat Fakültesi Dergisi, c. 21, sy. 5, 2024, ss. 1336-50, doi:10.33462/jotaf.1540727.
Vancouver Kayalı E, Yüksel O. Fertility Status of Agricultural Soils in İstanbul Province. JOTAF. 2024;21(5):1336-50.