Araştırma Makalesi
BibTex RIS Kaynak Göster

Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties

Yıl 2025, Cilt: 22 Sayı: 2, 293 - 307, 26.05.2025
https://doi.org/10.33462/jotaf.1402823

Öz

Wheat, an important food and industrial product, is one of the most widely grown plants in the world. Environmentally friendly alternative methods are needed to increase plant productivity. Plant growth-promoting rhizobacteria (PGPR) directly or indirectly promote plant growth and production by actively colonizing plant roots. In the current study, 49 isolates were obtained from rhizospheric soil samples of wheat fields in 6 districts of Kırşehir (Akpınar, Boztepe, Kaman, Mucur, Akçakent, Çiçekdağı) in May 2019 and the isolates were identified biochemically and by MALDI-TOF mass spectrometry. The MALDI-TOF MS results showed that 49 isolates from 14 distinct genera could be identified. Among the isolates, Bacillus, Pseudomonas, and Pseudarthrobacter ranked first through third. Plant growth promoting properties of these isolates (inorganic phosphate solubilisation, siderophore production, nitrogen fixation, HCN (Hydrogen cyanide) production, IAA (Indole-3-acetic acid) production) were screened. Among 49 isolates, 4 isolates (MH-50-6, MH-50-7, MH-60-1, and MH-60-3) dissolved inorganic phosphate, and 13 isolates (MH-28-1, MH-34-3, MH-34-8, MH-39-1, MH-39-3, MH-39-7, MH-50-8, MH-55-3, MH-55-7, MH-55-9, MH-60-1, MH-60-3, MH-60-5) nitrogen fixed, on the other hand, 9 isolates (MH-34-5, MH-34-8, MH-39-5, MH-50-6, MH-50-7, MH-50-8, MH-55-6, MH-60-1, MH-60-3) produced siderophores, 8 isolates (MH-28-1, MH-34-2, MH-34-4, MH-34-5, MH-39-1, MH-55-3, MH-60-2, MH-60-5) produced HCN, while 4 isolates (MH-34-8, MH-50-4, MH-50-8, MH-55-9) was determined to produce IAA. In conclusion, indigenous PGPR (Pseudarthrobacter oxydans MH-34-8, Pseudomonas jessenii MH-50-8, Arthrobacter crystallopoietes MH-60-1, Aromatoleum evansii MH-60-3) isolates gave positive results for at least 3 plant growth-promoting properties. The present study is the first study on growth-promoting plants isolated from wheat in Kırşehir (Turkey). This study will illuminate the preparation of effective microbial fertilizer with local bacterial species that spread in the region and the availability of local culture collections.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Akhtar, M. J., Asghar, H. N., Shahzad, K. and Arshad, M. (2009). Role of plant growth promoting rhizobacteria applied in combination with compost and mineral fertilizers to improve growth and yield of wheat (Triticum aestivum L.). Pakistan Journal of Botany, 41(1): 381-390.
  • Amara, U., Wang, Y. X., Cui, X. L., Khalid, R., Ali, S., Shabbir, G. and Hayat, R. (2015). Screening and identification of soil bacteria for growth promotion of wheat (Triticum aestivum L.). Journal of Biodiversity Environment Science, 7(3): 87-99.
  • Baghaee, R. and Heidarzadeh, N. (2014). Isolation and characterization of rhizosphere auxin producing Bacilli and evaluation of their potency on wheat growth improvement. Archives of Agronomy and Soil Science, 60(7): 895-905.
  • Bai, Y., Zhou, X. and Smith, D.L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43(5): 1774-1781.
  • Bakker, A. W. and Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19: 451–457.
  • Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H. and Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, 384(1-2): 413-431.
  • Bayar, A. A., Çınarlı, M. and Güven, G. B. (2019). Determination of fertility status of some agricultural soils in Kirsehir Province. Turkish Journal of Agricultural And Natural Sciences, 6(4): 636-647.
  • Chaiharn, M. and Lumyong, S. (2011). Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Current Microbiology, 62:173-181.
  • Çelik, Y. (2023). Evaluation of efficacy of some rhizobacteria in ımproving growth, yield and quality of Cauliflower (Brassica oleracea var. botrytis L.). Artvin Coruh University Journal of Forestry Faculty, 24(1): 113-118.
  • Çelikten, M., Bozkurt, İ. A., 2018. Determination of efficacies of bacteria isolated from wheat rhizospheres on plant growth. Journal of Agricultural Faculty of Mustafa Kemal University, 23(1): 33-48.
  • Deka, H., Deka, S. and Baruah, C.K. (2015). Plant growth promoting rhizobacteria for value addition: Mechanism of action. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, 42: 305-321.
  • Ehsan, S., Riaz, A., Qureshi, M. A., Ali, A., Saleem, I., Aftab, M. and Saleem, M. U. (2022). Isolation, purification and application of siderophore producing bacteria to improve wheat growth. Pakistan Journal of Agricultural Research, 35(2): 449-459.
  • El Habil-Addas, F., Aarab, S., Rfaki, A., Laglaoui, A., Bakkali, M. and Arakrak, A. (2017). Screening of phosphate solubilizing bacterial isolates for improving growth of wheat. European Journal of Biotechnology and Biosciences, 5(6): 7-11.
  • Erdem, B. (2013). Microbial siderophores and their biotechnologyical applications. The Black Sea Journal of Sciences, 3(8): 77-88.
  • Esertaş, Ü. Z. Ü., Karaoğlu, Ş. A., Uzunalioğlu, E. and Bozdeveci, A. (2023). Determination of bioremediation potentials and plant growth-promoting properties of Bacillus species ısolated from the rhizosphere of Dactylorhiza urvilleana. Journal of Tekirdag Agricultural Faculty, 20(4): 948-958.
  • Faisal, M. and Hasnain, S. (2006). Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata. Plants, 43(4): 461-466.
  • Haas, D. and Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Microbiology, 3: 307-319.
  • Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60: 579-598.
  • Illmer, P. and Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry, 24(4): 389-395.
  • Kenneth, O. C., Nwadibe, E. C., Kalu, A. U. and Unah, U. V. (2019). Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. American Journal of Agricultural and Biological Sciences, 14(35): 1-54.
  • Kloepper, J. W. (1978). Plant growth-promoting rhizobacteria on radishes. 4th International Conference on Plant Pathogenic Bacteria, Station de Pathologie Vegetale et Phytobacteriologie, INRA, 9-10 July, Angers, France.
  • Kotan, R. and Tozlu, E. (2021). Determination of bactericidal effects of some pesticides on useful and pathogenic bacteria. Journal of Tekirdag Agricultural Faculty, 18(2): 197-212.
  • López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I. and Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20(2): 207-217.
  • Mehnaz, S. and Lazarovits, G. (2006). Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecology, (51): 326-335.
  • Mehta, S. and Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43(1): 51-56.
  • Meyer, J. M. (2000). Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives of Microbiology, 174(1): 135-142.
  • Mukhtar, S., Shahid, I., Mehnaz, S. and Malik, K.A. (2017). Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Microbiological Research, 205(1): 107-117.
  • Mushtaq, S., Sadouki, Z., Vickers, A., Livermore, D. M. and Woodford, N. (2020). In vitro activity of cefiderocol, a siderophore cephalosporin, against multidrug-resistant Gram-negative bacteria. Antimicrobial agents and chemotherapy, 64(12): 10-1128.
  • Naseem, H. and Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interaction, 9: 689-701.
  • Ogut, M., Er, F. and Kandemir, N. (2010). Phosphate solubilization potentials of soil Acinetobacter strains. Biology and Fertility of Soils, 46: 707-715.
  • Oral, S. F. and Kotan, R. (2021). The effect of plant growth promoting bacteria on tomato plant growth parameters, yield and plant health. Turkish Journal of Biological Control, 12(1): 47-65.
  • Öğütcü, H. and Avsar, H. (2020). Characterization and siderophores production of Rhizobium spp. isolated from wild legumes. International Journal of Computational and Experimental Science and Engineering, 6(3): 176-179.
  • Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B. and Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, 2: 1-20.
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S. and Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2): 127-133.
  • Patten, C. L. and Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8): 3795-3801.
  • Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K. and Nain, L. (2011). Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Annals of Microbiology, 61(4): 893-900.
  • Rasuli, H., Khavazi, K., Rahimian, H., Malakouti, M. J. and Asadi Rahmani, H. (2006). The potential of native strains of Pseudomonas fluorescens, isolated from wheat rhizosphere, for siderophore production. Journal of Soil Water, 20: 133-143.
  • Sarwar, M. and Kremer, R. J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5): 282-285.
  • Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1: 287-292.
  • Sayyed, R. Z., Chincholkar, S. B., Reddy, M. S., Gangurde, N. S. and Patel, P. R. (2012). Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In Bacteria in agrobiology: disease management. Berlin Heidelberg: Springer Berlin Heidelberg, 17: 449-471.
  • Schwyn, B. and Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1): 47-56.
  • Sezen, A., Ozdal, M., Kubra, K. O. C. and Algur, O. F. (2016). Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on improving growth of wheat. Journal of Applied Biological Sciences, 10(1): 41-46.
  • Siddiqui, Z. A. (2006). PGPR: prospective biocontrol agents of plant pathogens. Biocontrol and Biofertilization, 4: 111–142.
  • Sokolova, M. G., Akimova, G. P. and Vaishlya, O. B. (2011). Effect of phytohormones synthesized by rhizosphere bacteria on plants. Applied Biochemistry and Microbiology, 47:274-278.
  • Sönmez, İ., Kaplan, M. and Sönmez, S. (2008). Effect of chemical fertilizers on environmental pollution and its prevention methods. Derim, 25(2): 24-34.
  • Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M. S. I., Shahid, N. and Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121: 102-117.
  • Temiz, A. (2010). General Microbiology Application Techniques, Hatipoğlu Publiser, Ankara, Türkiye. Uzun, S., Avci, S., Ozcan, S. and Sancak, C. (2017). Effects of NaCl on germination and seedling characteristics of different onobrychis taxa. Fresenius Environmental Bulletin, 26(11): 6317-6323.
  • Walker, V., Bertrand, C., Bellvert, F., Moënne‐Loccoz, Y., Bally, R. and Comte, G. (2011). Host plant secondary metabolite profiling shows a complex, strain‐dependent response of maize to plant growth‐promoting rhizobacteria of the genus Azospirillum. New Phytologist, 189(2): 494-506.
  • Wang, H., Xu, R., You, L. and Zhong, G. (2013). Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicology and Environmental Safety, 94: 1-7.
  • Wani, P., Khan, M. and Zaidi, A. (2007). Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agronomica Hungarica, 55(3): 315-323.
  • Wilson, P. W. and Knight, S. G. (1952). Experiments in Bacterial Physiology Minneapolis: Burgess Publiser, Minneapolis, U.S.A.
  • Zaidi, A. and Khan, S. (2005). Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. Journal of Plant Nutrition, 28(12): 2079-2092.

Buğday Bitkisi Rizosferinden Yararlı Bakterilerin İzolasyonu ve Bitki Büyümesini Teşvik Edici Özelliklerinin Belirlenmesi

Yıl 2025, Cilt: 22 Sayı: 2, 293 - 307, 26.05.2025
https://doi.org/10.33462/jotaf.1402823

Öz

Önemli bir gıda ve sanayi ürünü olan buğday, dünyada yaygın bir şekilde yetiştirilen bitkilerden biridir. Bitki verimliliğini artırmak için çevre dostu alternatif yöntemlere ihtiyaç vardır. Bitki büyümesini teşvik eden rizobakteriler (PGPR), bitki köklerini aktif olarak kolonize ederek bitki büyümesini ve üretimini doğrudan veya dolaylı bir şekilde destekler. Bu çalışmada, Mayıs 2019'da Türkiye'de Kırşehir'in 6 ilçesinde (Akpınar, Boztepe, Kaman, Mucur, Akçakent, Çiçekdağı) buğday tarlalarının rizosferik toprak örneklerinden 49 izolat elde edilmiş ve izolatların biyokimyasal ve MALDI-TOF kütle spektrometrisi yöntemiyle teşhisleri yapılmıştır. MALDI-TOF MS sonuçlarına göre 14 farklı cinse ait 49 izolat tanımlanmıştır. 49 izolat içerisinde ilk üç sırada Bacillus, Pseudomonas ve Pseudarthrobacter cinsleri yer almaktadır. Bu izolatların bitki büyümesini teşvik edici özellikleri (inorganik fosfat çözünürlüğü, siderofor üretimi, azot fiksasyonu, HCN (Hydrogen cyanide) üretimi, IAA (Indole-3-acetic acid) üretimi) tarandı. 49 izolattan 4'ünün (MH-50-6, MH-50-7, MH-60-1, and MH-60-3) inorganik fosfatı çözdüğü, 13'ünün (MH-28-1, MH-34-3, MH-34-8, MH-39-1, MH-39-3, MH-39-7, MH-50-8, MH-55-3, MH-55-7, MH-55-9, MH-60-1, MH-60-3, MH-60-5) azot fiksasyonu yaptığı, 9'unun (MH-34-5, MH-34-8, MH-39-5, MH-50-6, MH-50-7, MH-50-8, MH-55-6, MH-60-1, MH-60-3) siderofor ürettiği, 8'inin (MH-28-1, MH-34-2, MH-34-4, MH-34-5, MH-39-1, MH-55-3, MH-60-2, MH-60-5) HCN ürettiği, 4'ünün (MH-34-8, MH-50-4, MH-50-8, MH-55-9) ise IAA ürettiği belirlendi. Sonuç olarak, yerli PGPR (Pseudarthrobacter oxydans MH-34-8, Pseudomonas jessenii MH-50-8, Arthrobacter crystallopoietes MH-60-1, Aromatoleum evansii MH-60-3) izolatları en az 3 bitki büyümesini teşvik edici özellikleri bakımından pozitif sonuçlar vermiştir. Bu çalışma, Kırşehir'de (Türkiye) buğdaydan izole edilen büyümeyi teşvik eden bitkiler üzerine yapılan ilk çalışmadır. Bu çalışma, bölgede yayılış gösteren yerel bakteri türleri ile etkili mikrobiyal gübre hazırlanmasına ve yerel kültür koleksiyonlarının varlığına ışık tutacaktır.

Etik Beyan

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

Kaynakça

  • Akhtar, M. J., Asghar, H. N., Shahzad, K. and Arshad, M. (2009). Role of plant growth promoting rhizobacteria applied in combination with compost and mineral fertilizers to improve growth and yield of wheat (Triticum aestivum L.). Pakistan Journal of Botany, 41(1): 381-390.
  • Amara, U., Wang, Y. X., Cui, X. L., Khalid, R., Ali, S., Shabbir, G. and Hayat, R. (2015). Screening and identification of soil bacteria for growth promotion of wheat (Triticum aestivum L.). Journal of Biodiversity Environment Science, 7(3): 87-99.
  • Baghaee, R. and Heidarzadeh, N. (2014). Isolation and characterization of rhizosphere auxin producing Bacilli and evaluation of their potency on wheat growth improvement. Archives of Agronomy and Soil Science, 60(7): 895-905.
  • Bai, Y., Zhou, X. and Smith, D.L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Science, 43(5): 1774-1781.
  • Bakker, A. W. and Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19: 451–457.
  • Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H. and Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, 384(1-2): 413-431.
  • Bayar, A. A., Çınarlı, M. and Güven, G. B. (2019). Determination of fertility status of some agricultural soils in Kirsehir Province. Turkish Journal of Agricultural And Natural Sciences, 6(4): 636-647.
  • Chaiharn, M. and Lumyong, S. (2011). Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Current Microbiology, 62:173-181.
  • Çelik, Y. (2023). Evaluation of efficacy of some rhizobacteria in ımproving growth, yield and quality of Cauliflower (Brassica oleracea var. botrytis L.). Artvin Coruh University Journal of Forestry Faculty, 24(1): 113-118.
  • Çelikten, M., Bozkurt, İ. A., 2018. Determination of efficacies of bacteria isolated from wheat rhizospheres on plant growth. Journal of Agricultural Faculty of Mustafa Kemal University, 23(1): 33-48.
  • Deka, H., Deka, S. and Baruah, C.K. (2015). Plant growth promoting rhizobacteria for value addition: Mechanism of action. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, 42: 305-321.
  • Ehsan, S., Riaz, A., Qureshi, M. A., Ali, A., Saleem, I., Aftab, M. and Saleem, M. U. (2022). Isolation, purification and application of siderophore producing bacteria to improve wheat growth. Pakistan Journal of Agricultural Research, 35(2): 449-459.
  • El Habil-Addas, F., Aarab, S., Rfaki, A., Laglaoui, A., Bakkali, M. and Arakrak, A. (2017). Screening of phosphate solubilizing bacterial isolates for improving growth of wheat. European Journal of Biotechnology and Biosciences, 5(6): 7-11.
  • Erdem, B. (2013). Microbial siderophores and their biotechnologyical applications. The Black Sea Journal of Sciences, 3(8): 77-88.
  • Esertaş, Ü. Z. Ü., Karaoğlu, Ş. A., Uzunalioğlu, E. and Bozdeveci, A. (2023). Determination of bioremediation potentials and plant growth-promoting properties of Bacillus species ısolated from the rhizosphere of Dactylorhiza urvilleana. Journal of Tekirdag Agricultural Faculty, 20(4): 948-958.
  • Faisal, M. and Hasnain, S. (2006). Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata. Plants, 43(4): 461-466.
  • Haas, D. and Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Microbiology, 3: 307-319.
  • Hayat, R., Ali, S., Amara, U., Khalid, R. and Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60: 579-598.
  • Illmer, P. and Schinner, F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry, 24(4): 389-395.
  • Kenneth, O. C., Nwadibe, E. C., Kalu, A. U. and Unah, U. V. (2019). Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. American Journal of Agricultural and Biological Sciences, 14(35): 1-54.
  • Kloepper, J. W. (1978). Plant growth-promoting rhizobacteria on radishes. 4th International Conference on Plant Pathogenic Bacteria, Station de Pathologie Vegetale et Phytobacteriologie, INRA, 9-10 July, Angers, France.
  • Kotan, R. and Tozlu, E. (2021). Determination of bactericidal effects of some pesticides on useful and pathogenic bacteria. Journal of Tekirdag Agricultural Faculty, 18(2): 197-212.
  • López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I. and Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20(2): 207-217.
  • Mehnaz, S. and Lazarovits, G. (2006). Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecology, (51): 326-335.
  • Mehta, S. and Nautiyal, C. S. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43(1): 51-56.
  • Meyer, J. M. (2000). Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives of Microbiology, 174(1): 135-142.
  • Mukhtar, S., Shahid, I., Mehnaz, S. and Malik, K.A. (2017). Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Microbiological Research, 205(1): 107-117.
  • Mushtaq, S., Sadouki, Z., Vickers, A., Livermore, D. M. and Woodford, N. (2020). In vitro activity of cefiderocol, a siderophore cephalosporin, against multidrug-resistant Gram-negative bacteria. Antimicrobial agents and chemotherapy, 64(12): 10-1128.
  • Naseem, H. and Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interaction, 9: 689-701.
  • Ogut, M., Er, F. and Kandemir, N. (2010). Phosphate solubilization potentials of soil Acinetobacter strains. Biology and Fertility of Soils, 46: 707-715.
  • Oral, S. F. and Kotan, R. (2021). The effect of plant growth promoting bacteria on tomato plant growth parameters, yield and plant health. Turkish Journal of Biological Control, 12(1): 47-65.
  • Öğütcü, H. and Avsar, H. (2020). Characterization and siderophores production of Rhizobium spp. isolated from wild legumes. International Journal of Computational and Experimental Science and Engineering, 6(3): 176-179.
  • Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B. and Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, 2: 1-20.
  • Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S. and Sa, T. (2005). Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research, 160(2): 127-133.
  • Patten, C. L. and Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8): 3795-3801.
  • Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K. and Nain, L. (2011). Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Annals of Microbiology, 61(4): 893-900.
  • Rasuli, H., Khavazi, K., Rahimian, H., Malakouti, M. J. and Asadi Rahmani, H. (2006). The potential of native strains of Pseudomonas fluorescens, isolated from wheat rhizosphere, for siderophore production. Journal of Soil Water, 20: 133-143.
  • Sarwar, M. and Kremer, R. J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5): 282-285.
  • Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. Apcbee Procedia, 1: 287-292.
  • Sayyed, R. Z., Chincholkar, S. B., Reddy, M. S., Gangurde, N. S. and Patel, P. R. (2012). Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In Bacteria in agrobiology: disease management. Berlin Heidelberg: Springer Berlin Heidelberg, 17: 449-471.
  • Schwyn, B. and Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1): 47-56.
  • Sezen, A., Ozdal, M., Kubra, K. O. C. and Algur, O. F. (2016). Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on improving growth of wheat. Journal of Applied Biological Sciences, 10(1): 41-46.
  • Siddiqui, Z. A. (2006). PGPR: prospective biocontrol agents of plant pathogens. Biocontrol and Biofertilization, 4: 111–142.
  • Sokolova, M. G., Akimova, G. P. and Vaishlya, O. B. (2011). Effect of phytohormones synthesized by rhizosphere bacteria on plants. Applied Biochemistry and Microbiology, 47:274-278.
  • Sönmez, İ., Kaplan, M. and Sönmez, S. (2008). Effect of chemical fertilizers on environmental pollution and its prevention methods. Derim, 25(2): 24-34.
  • Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M. S. I., Shahid, N. and Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121: 102-117.
  • Temiz, A. (2010). General Microbiology Application Techniques, Hatipoğlu Publiser, Ankara, Türkiye. Uzun, S., Avci, S., Ozcan, S. and Sancak, C. (2017). Effects of NaCl on germination and seedling characteristics of different onobrychis taxa. Fresenius Environmental Bulletin, 26(11): 6317-6323.
  • Walker, V., Bertrand, C., Bellvert, F., Moënne‐Loccoz, Y., Bally, R. and Comte, G. (2011). Host plant secondary metabolite profiling shows a complex, strain‐dependent response of maize to plant growth‐promoting rhizobacteria of the genus Azospirillum. New Phytologist, 189(2): 494-506.
  • Wang, H., Xu, R., You, L. and Zhong, G. (2013). Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicology and Environmental Safety, 94: 1-7.
  • Wani, P., Khan, M. and Zaidi, A. (2007). Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agronomica Hungarica, 55(3): 315-323.
  • Wilson, P. W. and Knight, S. G. (1952). Experiments in Bacterial Physiology Minneapolis: Burgess Publiser, Minneapolis, U.S.A.
  • Zaidi, A. and Khan, S. (2005). Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. Journal of Plant Nutrition, 28(12): 2079-2092.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Mikrobiyolojisi
Bölüm Makaleler
Yazarlar

Murat Güler 0000-0002-3074-6458

Hatice Öğütcü 0000-0001-7100-9318

Yasemin Numanoğlu Çevik 0000-0001-5818-7881

Erken Görünüm Tarihi 8 Mayıs 2025
Yayımlanma Tarihi 26 Mayıs 2025
Gönderilme Tarihi 14 Aralık 2023
Kabul Tarihi 26 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 2

Kaynak Göster

APA Güler, M., Öğütcü, H., & Numanoğlu Çevik, Y. (2025). Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties. Tekirdağ Ziraat Fakültesi Dergisi, 22(2), 293-307. https://doi.org/10.33462/jotaf.1402823
AMA Güler M, Öğütcü H, Numanoğlu Çevik Y. Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties. JOTAF. Mayıs 2025;22(2):293-307. doi:10.33462/jotaf.1402823
Chicago Güler, Murat, Hatice Öğütcü, ve Yasemin Numanoğlu Çevik. “Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties”. Tekirdağ Ziraat Fakültesi Dergisi 22, sy. 2 (Mayıs 2025): 293-307. https://doi.org/10.33462/jotaf.1402823.
EndNote Güler M, Öğütcü H, Numanoğlu Çevik Y (01 Mayıs 2025) Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties. Tekirdağ Ziraat Fakültesi Dergisi 22 2 293–307.
IEEE M. Güler, H. Öğütcü, ve Y. Numanoğlu Çevik, “Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties”, JOTAF, c. 22, sy. 2, ss. 293–307, 2025, doi: 10.33462/jotaf.1402823.
ISNAD Güler, Murat vd. “Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties”. Tekirdağ Ziraat Fakültesi Dergisi 22/2 (Mayıs 2025), 293-307. https://doi.org/10.33462/jotaf.1402823.
JAMA Güler M, Öğütcü H, Numanoğlu Çevik Y. Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties. JOTAF. 2025;22:293–307.
MLA Güler, Murat vd. “Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties”. Tekirdağ Ziraat Fakültesi Dergisi, c. 22, sy. 2, 2025, ss. 293-07, doi:10.33462/jotaf.1402823.
Vancouver Güler M, Öğütcü H, Numanoğlu Çevik Y. Isolation of Beneficial Bacteria from Wheat Plant Rhizosphere and Determination of PGP (Plant Growth Promoting) Properties. JOTAF. 2025;22(2):293-307.