Utilizing Phenotypic Selection to Enhance Yield and Develop T. urticae Resistance in Interspecific Hybrid Tomatoes Derived from S. habrochaites
Yıl 2025,
Cilt: 22 Sayı: 3, 601 - 611, 29.09.2025
Mohammad Hasan Dawood
,
John Snyder
Öz
Tomatoes play a significant role in global agriculture, but they face challenges from pests and diseases, including the T. urticae. Researchers have been investigating various approaches to undertake this problem and improve tomato yield. One such strategy being explored is interspecific hybridization, which involves breeding two distinct species belonging to the same genus. This study investigated the genetic basis of resistance to spider mites in 13 13 BC3F7 generation lines (IS) and two F1 hybrid tomato cultivars (T1: Maglia Rosa and T2: Roma 1). The results showed that the IS lines had significantly higher fruit counts plant-1 than the T lines, with the ISD90-89 displaying the highest fruit count. However, the total fruit weight plant-1 was greater in the T lines than in the IS hybrids, with the IS having relatively smaller fruit weight. In terms of 7-epizingiberene content, no significant differences were observed within the lines of a particular IS family. However, a significant difference in 7-epizingiberene content was obtained between the two IS families, with the IS-F22 family demonstrating higher levels compared to the IS-D90 family. Notably, no 7-epizingiberene content was detected in the T and cultivated cultivars. Regarding repellency, the T1 and T2 tomato varieties were found to be susceptible to spider mites, while the genotypes in the D-90 and F-22 families exhibited varying levels of repellency. Additionally, the analysis revealed a significant negative correlation between average plant yield and 7-epizingiberene content in the ISs (r=-0.731). As the content of 7-epizingiberene increased, the yield tended to decrease, suggesting a potential yield penalty associated with its production. On the other hand, there was a positive correlation of 0.743 between fruit weight plant-1 and total weight plant-1, indicating that higher fruit weights were linked to increased total plant weights. Additionally, a positive correlation of 0.431 was obtained between fruit number plant-1 and 7-epizingiberene concentration. The results of this study provide valuable insights into the genetic basis of resistance, yield, and 7-epizingiberene production in ISs. This knowledge will contribute to the advancement of breeding programs and the development of sustainable pest management strategies in tomato cultivation.
Etik Beyan
There is no need to obtain permission from the ethics committee for this study.
Destekleyen Kurum
University of Kufa, University of Kentucky
Teşekkür
The authors express their gratitude to George F. Antonious, a professor in the Division of Environmental Studies, College of Agriculture, Communities, and the Environment at Kentucky State University, for his valuable support. They also extend their sincere appreciation to Belinda Labadie for her technical assistance in conducting this research.
Kaynakça
-
Antonious, G. F. and Kochhar, T. S. (2003). Zingiberene and curcumene in wild tomato. Journal of Environmental Science and Health, Part B, 38(4): 489-500.
-
Antonious, G. F. and Snyder, J. C. (2006). Natural products: Repellency and toxicity of wild tomato leaf extracts to the two-spotted spider mite, Tetranychus urticae Koch. Journal of Environmental Science and Health, Part B, 41(1): 43-55.
-
Aragão, C. A., Dantas, B. F. and Benites, F. R. G. (2000). Foliar trichome in tomato with contrasting levels of alelochemical 2-tridecanone. Scientia Agricola, 57(4): 813-816.
-
Bhatt, A., Naidoo, Y. and Nicholas, A. (2010). The foliar trichomes of Plectranthus laxiflorus Benth [Lamiaceae]: An important medicinal plant. New Zealand Journal of Botany, 48(2): 55-61.
-
Bleeker, P. M., Diergaarde, P. J., Ament, K., Schütz, S., Johne, B., Dijkink, J., Hiemstra H., de Gelder R., de Both M. T. J., Sabelis, M. W., Haring M. A. and Schuurink R. C. (2011). Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry, 72(1): 68-73.
-
Çay, A. and Aykaş, E. (2013). Effects of different seedling-bad preparations and cover crop application on yield and post-harvest quality parameters in tomato production. Journal of Tekirdag Agricultural Faculty, 10(1): 105-114.
-
Da Silveira Vasconcelos, M., Mota, E. F., Gomes-Rochette, N. F., Nunes-Pinheiro, D. C. S., Nabavi, S. M. and de Melo, D. F. (2019). Ginger (Zingiber officinale Roscoe). In: Nonvitamin and Nonmineral Nutritional Supplements, Eds: Nabavi S. M. and Silva A. S., Elsevier, London U.K.
-
Dawood, M. H. and Snyder, J. C. (2020). The alcohol and epoxy alcohol of zingiberene, produced in trichomes of wild tomato, are more repellent to spider mites than zingiberene. Frontiers in Plant Science, 11(35). https://doi.org/10.3389/fpls.2020.00035
-
De Oliveira J. R. F., de Resende J. T. V., de Lima Filho R. B., Roberto S. R., da Silva P. R., Rech, C. and Nardi, C. (2020) Tomato breeding for sustainable crop systems: High levels of zingiberene providing resistance to multiple arthropods. Horticulture, 6(2): 34.
-
De Oliveira, J. R. F., de Resende, J. T. V., Maluf, W. R., Lucini, T., de Lima Filho, R. B., de Lima, I. P. and Nardi C. (2018). Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Frontiers in Plant Science, 9: 1132.
-
De Souza, L. M., Melo, P. C. T., Luders, R. R. and Melo, A. M. T. (2012). Correlations between yield and fruit quality characteristics of fresh market tomatoes. Horticultura Brasileira, 30(4): 627-631.
-
Demuth, J. P. and Wade, M. J. (2005). On the theoretical and empirical framework for studying genetic interactions within and among species. The American Naturalist, 165(5): 524-536.
-
Der, G. and Everitt B. S. (2015). Essential Statistics Using SAS University Edition, SAS Institute.
FAO (2023). FAOSTAT: Production Quantities of Tomatoes by Country, 2023. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL
-
Freitas, J. A., Maluf, W. R., das Graças Cardoso, M., Gomes, L. A. A., and Bearzotti, E. (2002). Inheritances of foliar zingiberene contents and their relationship to trichome densities and whitefly resistance in tomatoes. Euphytica, 127(2): 275-287.
-
Fufa, H., Baenziger, P., Beecher, B., Dweikat, I., Graybosch, R.A. and Eskridge, K. M. (2005). Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica, 145: 133-146.
-
Gonçalves, L. D., Maluf, W. R., Cardoso, M. D. G., de Resende, J. T. V., de Castro, E. M., Santos, N. M., do Nascimento I. R. and Faria, M. V. (2006). Relação entre zingibereno, tricomas foliares e repelência de tomateiros a Tetranychus evansi. Pesquisa Agrícola Brasileira, 41(2): 267-273.
-
Guo, Z., Weston, P. A. and Snyder, J. C. (1993). Repellency to two-spotted spider mite, Tetranychus urticae Koch, as related to leaf surface chemistry of Lycopersicon hirsutum accessions. Journal of Chemical Ecology, 19(12): 2965-2979.
-
Hui, Z., Xiaoxuan, W., Zejun, H. Jianchang, G. Yanmei, G, Yongchen, D. and Hong, H. (2016). Identification of quantitative trait loci for fruit weight, soluble solids content, and plant morphology using an introgression line population of Solanum pennellii in a fresh market tomato inbred line. Horticultural Plant Journal, 2(1): 26-34.
-
Lucini, T., Faria, M. V., Rohde, C., de Resende, J. T. V. and de Oliveira, J. R. F. (2015). Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interactions, 9(1): 45-53.
-
Luczynski A, Isman M. B., Raworth D. A. and Chan C. K. (1990). Chemical and morphological factors of resistance against the two spotted spider mite in beach strawberry. Journal of Economic Entomology, 83(2): 564-569.
-
Lynch, M. and Force, A. G. (2000). The origin of interspecific genomic incompatibility via gene duplication. The American Naturalist, 156(6): 590-605.
-
Maluf, W. R., Campos, G. A. and das Graças Cardoso, M. (2001). Relationships between trichome types and spider mite (Tetranychus evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica, 121(1): 73-80.
-
Mohamed S. M., Ali E. E. and Mohamed T. Y. (2012). Study of heritability and genetic variability among different plant and fruit characters of tomato (Solanum lycopersicon L.). International Journal of Science and Technology Research, 1(2): 55-58.
-
Panizzon Diniz, F. C., de Resende, J. T. V., de Lima-Filho, R. B., Pilati, L., Gomes, G. C., Roberto, S. R. and da-Silva, P. R. (2022). Development of BC3F2 tomato genotypes with arthropod resistance introgressed from Solanum habrochaites var. hirsutum (PI127826). Horticulture, 8(12): 1217.
-
Rick, C. M. and Chetelat R. T. (1995). Utilization of related wild species for tomato improvement. Acta Horticulturae (412): 21-38. https://doi.org/10.17660/ActaHortic.1995.412.1
-
Sances, F. V., Wyman J. A. and Ting I. P. (1979). Morphological responses of strawberry leaves to infestations of two spotted spider mite. Journal of Economic Entomology, 72(5): 710-713.
-
Santamaria, M. E., Arnaiz, A., Rosa-Diaz, I., González-Melendi, P., Romero-Hernandez, G., Ojeda-Martinez, D. A., Garcia, A., Contreras, E., Martinez, M. and Diaz, I. (2020). Plant defenses against Tetranychus urticae: Mind the gaps. Plants, 9(4): 464.
-
Saravanan, K. R., Vishnupriya, V., Prakash, M. and Anandan R. (2019). Variability, heritability and genetic advance in tomato genotypes. Indian Journal of Agricultural Research, 53(1): 92-95.
-
Savi, P. J., de Moraes, G. J., Carvalho, R. F. and de Andrade, D. J. (2022). Bottom-up effects of breeding tomato genotypes on behavioral responses and performance of Tetranychus evansi population. Journal of Pesticide Science, 95(3): 1-15.
-
Snyder, J. and Min, C. (2008). Insect resistance in Lycopersicon hirsutum LA2329-current status. International Symposium on Vegetable Production, Quality and Process Standardization in Chain: A Worldwide Perspective, 944, 14-17 October, Beijing, China.
-
Snyder, J. C., Antonious G. F. and Thacker, R. (2011). A sensitive bioassay for spider mite (Tetranychus urticae) repellency: A double bond makes a difference. Experimental and Applied Acarology, 55(3): 215-224.
-
Snyder, J. C., Guo, Z., Thacker, R., Goodman, J. P. and Pyrek, J. S. (1993). 2, 3-Dihydrofarnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider mites. Journal of Chemical Ecology, 19(2): 2981-2997.
-
Snyder, J. C., Thacker, R. R., Zhang, X. (2005). Genetic transfer of a two spotted spider mite (Acari: Tetranychidae) repellent in tomato hybrids. Journal of Economic Entomology, 98(5): 1710-1716.
-
Turhan A. and Özmen N (2021). Effects of chemical and organic fertilizer treatments on yield and quality traits of industrial tomato. Journal of Tekirdag Agricultural Faculty, 18 (2): 213-221.
-
Ulyshen M. D. and Shelton T. G. (2012). Evidence of cue synergism in termite corpse response behavior. Naturwissenschaften, 99(2): 89-93.
-
Wang E., Brown H. E., Rebetzke, G. J., Zhao, Z., Zheng, B. and Chapman, S. C. (2019). Improving process-based crop models to better capture genotype×environment×management interactions. Journal of Experimental Botany, 70(9): 2389-2401.
-
Weinblum, N., Cna'Ani, A., Yaakov, B., Sadeh, A., Avraham, L., Opatovsky, I. and Tzin V. (2021). Tomato cultivars resistant or susceptible to spider mites differ in their biosynthesis and metabolic profile of the monoterpenoid pathway. Frontiers in Plant Science, 12: 630155.
-
Weston, P. A. and Snyder, J. C. (1990). Thumbtack bioassay: A quick method for measuring plant resistance to two spotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology, 83(2), 500-504.
-
Xie, Q., Tian, Y., Hu, Z., Zhang, L., Tang, B., Wang, Y., Li, J. and Chen G. (2021). Novel translational and phosphorylation modification regulation mechanisms of tomato (Solanum lycopersicum) fruit ripening revealed by integrative proteomics and phosphoproteomics. International Journal of Molecular Sciences, 22(21), 11782.
-
Zanin, D. S., de Resende, J. T. V., Zeist, A. R., de Lima Filho, R. B., Gabriel, A., Diniz, F. C. P., Perrud, A. C. and Morales, R. G. F. (2021). Selection of F2BC1 tomato genotypes for processing containing high levels of zingiberene and resistance to tomato pinworms. Phytoparasitica, 49(2): 265-274.
-
Zanin, D. S., Resende, J. T. V., Zeist, A. R., Oliveira, J. R.F., Henschel, J. M. and Lima Filho, R. B. (2018). Selection of processing tomato genotypes resistant to two-spotted spider mite. Horticultura Brasileira, 36(2): 271-275.
Utilizing Phenotypic Selection to Enhance Yield and Develop T. urticae Resistance in Interspecific Hybrid Tomatoes Derived from S. habrochaites
Yıl 2025,
Cilt: 22 Sayı: 3, 601 - 611, 29.09.2025
Mohammad Hasan Dawood
,
John Snyder
Öz
Tomatoes play a significant role in global agriculture, but they face challenges from pests and diseases, including the T. urticae. Researchers have been investigating various approaches to undertake this problem and improve tomato yield. One such strategy being explored is interspecific hybridization, which involves breeding two distinct species belonging to the same genus. This study investigated the genetic basis of resistance to spider mites in 13 13 BC3F7 generation lines (IS) and two F1 hybrid tomato cultivars (T1: Maglia Rosa and T2: Roma 1). The results showed that the IS lines had significantly higher fruit counts plant-1 than the T lines, with the ISD90-89 displaying the highest fruit count. However, the total fruit weight plant-1 was greater in the T lines than in the IS hybrids, with the IS having relatively smaller fruit weight. In terms of 7-epizingiberene content, no significant differences were observed within the lines of a particular IS family. However, a significant difference in 7-epizingiberene content was obtained between the two IS families, with the IS-F22 family demonstrating higher levels compared to the IS-D90 family. Notably, no 7-epizingiberene content was detected in the T and cultivated cultivars. Regarding repellency, the T1 and T2 tomato varieties were found to be susceptible to spider mites, while the genotypes in the D-90 and F-22 families exhibited varying levels of repellency. Additionally, the analysis revealed a significant negative correlation between average plant yield and 7-epizingiberene content in the ISs (r=-0.731). As the content of 7-epizingiberene increased, the yield tended to decrease, suggesting a potential yield penalty associated with its production. On the other hand, there was a positive correlation of 0.743 between fruit weight plant-1 and total weight plant-1, indicating that higher fruit weights were linked to increased total plant weights. Additionally, a positive correlation of 0.431 was obtained between fruit number plant-1 and 7-epizingiberene concentration. The results of this study provide valuable insights into the genetic basis of resistance, yield, and 7-epizingiberene production in ISs. This knowledge will contribute to the advancement of breeding programs and the development of sustainable pest management strategies in tomato cultivation.
Etik Beyan
There is no need to obtain permission from the ethics committee for this study.
Destekleyen Kurum
University of Kufa, University of Kentucky
Teşekkür
The authors express their gratitude to George F. Antonious, a professor in the Division of Environmental Studies, College of Agriculture, Communities, and the Environment at Kentucky State University, for his valuable support. They also extend their sincere appreciation to Belinda Labadie for her technical assistance in conducting this research.
Kaynakça
-
Antonious, G. F. and Kochhar, T. S. (2003). Zingiberene and curcumene in wild tomato. Journal of Environmental Science and Health, Part B, 38(4): 489-500.
-
Antonious, G. F. and Snyder, J. C. (2006). Natural products: Repellency and toxicity of wild tomato leaf extracts to the two-spotted spider mite, Tetranychus urticae Koch. Journal of Environmental Science and Health, Part B, 41(1): 43-55.
-
Aragão, C. A., Dantas, B. F. and Benites, F. R. G. (2000). Foliar trichome in tomato with contrasting levels of alelochemical 2-tridecanone. Scientia Agricola, 57(4): 813-816.
-
Bhatt, A., Naidoo, Y. and Nicholas, A. (2010). The foliar trichomes of Plectranthus laxiflorus Benth [Lamiaceae]: An important medicinal plant. New Zealand Journal of Botany, 48(2): 55-61.
-
Bleeker, P. M., Diergaarde, P. J., Ament, K., Schütz, S., Johne, B., Dijkink, J., Hiemstra H., de Gelder R., de Both M. T. J., Sabelis, M. W., Haring M. A. and Schuurink R. C. (2011). Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry, 72(1): 68-73.
-
Çay, A. and Aykaş, E. (2013). Effects of different seedling-bad preparations and cover crop application on yield and post-harvest quality parameters in tomato production. Journal of Tekirdag Agricultural Faculty, 10(1): 105-114.
-
Da Silveira Vasconcelos, M., Mota, E. F., Gomes-Rochette, N. F., Nunes-Pinheiro, D. C. S., Nabavi, S. M. and de Melo, D. F. (2019). Ginger (Zingiber officinale Roscoe). In: Nonvitamin and Nonmineral Nutritional Supplements, Eds: Nabavi S. M. and Silva A. S., Elsevier, London U.K.
-
Dawood, M. H. and Snyder, J. C. (2020). The alcohol and epoxy alcohol of zingiberene, produced in trichomes of wild tomato, are more repellent to spider mites than zingiberene. Frontiers in Plant Science, 11(35). https://doi.org/10.3389/fpls.2020.00035
-
De Oliveira J. R. F., de Resende J. T. V., de Lima Filho R. B., Roberto S. R., da Silva P. R., Rech, C. and Nardi, C. (2020) Tomato breeding for sustainable crop systems: High levels of zingiberene providing resistance to multiple arthropods. Horticulture, 6(2): 34.
-
De Oliveira, J. R. F., de Resende, J. T. V., Maluf, W. R., Lucini, T., de Lima Filho, R. B., de Lima, I. P. and Nardi C. (2018). Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Frontiers in Plant Science, 9: 1132.
-
De Souza, L. M., Melo, P. C. T., Luders, R. R. and Melo, A. M. T. (2012). Correlations between yield and fruit quality characteristics of fresh market tomatoes. Horticultura Brasileira, 30(4): 627-631.
-
Demuth, J. P. and Wade, M. J. (2005). On the theoretical and empirical framework for studying genetic interactions within and among species. The American Naturalist, 165(5): 524-536.
-
Der, G. and Everitt B. S. (2015). Essential Statistics Using SAS University Edition, SAS Institute.
FAO (2023). FAOSTAT: Production Quantities of Tomatoes by Country, 2023. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL
-
Freitas, J. A., Maluf, W. R., das Graças Cardoso, M., Gomes, L. A. A., and Bearzotti, E. (2002). Inheritances of foliar zingiberene contents and their relationship to trichome densities and whitefly resistance in tomatoes. Euphytica, 127(2): 275-287.
-
Fufa, H., Baenziger, P., Beecher, B., Dweikat, I., Graybosch, R.A. and Eskridge, K. M. (2005). Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica, 145: 133-146.
-
Gonçalves, L. D., Maluf, W. R., Cardoso, M. D. G., de Resende, J. T. V., de Castro, E. M., Santos, N. M., do Nascimento I. R. and Faria, M. V. (2006). Relação entre zingibereno, tricomas foliares e repelência de tomateiros a Tetranychus evansi. Pesquisa Agrícola Brasileira, 41(2): 267-273.
-
Guo, Z., Weston, P. A. and Snyder, J. C. (1993). Repellency to two-spotted spider mite, Tetranychus urticae Koch, as related to leaf surface chemistry of Lycopersicon hirsutum accessions. Journal of Chemical Ecology, 19(12): 2965-2979.
-
Hui, Z., Xiaoxuan, W., Zejun, H. Jianchang, G. Yanmei, G, Yongchen, D. and Hong, H. (2016). Identification of quantitative trait loci for fruit weight, soluble solids content, and plant morphology using an introgression line population of Solanum pennellii in a fresh market tomato inbred line. Horticultural Plant Journal, 2(1): 26-34.
-
Lucini, T., Faria, M. V., Rohde, C., de Resende, J. T. V. and de Oliveira, J. R. F. (2015). Acylsugar and the role of trichomes in tomato genotypes resistance to Tetranychus urticae. Arthropod-Plant Interactions, 9(1): 45-53.
-
Luczynski A, Isman M. B., Raworth D. A. and Chan C. K. (1990). Chemical and morphological factors of resistance against the two spotted spider mite in beach strawberry. Journal of Economic Entomology, 83(2): 564-569.
-
Lynch, M. and Force, A. G. (2000). The origin of interspecific genomic incompatibility via gene duplication. The American Naturalist, 156(6): 590-605.
-
Maluf, W. R., Campos, G. A. and das Graças Cardoso, M. (2001). Relationships between trichome types and spider mite (Tetranychus evansi) repellence in tomatoes with respect to foliar zingiberene contents. Euphytica, 121(1): 73-80.
-
Mohamed S. M., Ali E. E. and Mohamed T. Y. (2012). Study of heritability and genetic variability among different plant and fruit characters of tomato (Solanum lycopersicon L.). International Journal of Science and Technology Research, 1(2): 55-58.
-
Panizzon Diniz, F. C., de Resende, J. T. V., de Lima-Filho, R. B., Pilati, L., Gomes, G. C., Roberto, S. R. and da-Silva, P. R. (2022). Development of BC3F2 tomato genotypes with arthropod resistance introgressed from Solanum habrochaites var. hirsutum (PI127826). Horticulture, 8(12): 1217.
-
Rick, C. M. and Chetelat R. T. (1995). Utilization of related wild species for tomato improvement. Acta Horticulturae (412): 21-38. https://doi.org/10.17660/ActaHortic.1995.412.1
-
Sances, F. V., Wyman J. A. and Ting I. P. (1979). Morphological responses of strawberry leaves to infestations of two spotted spider mite. Journal of Economic Entomology, 72(5): 710-713.
-
Santamaria, M. E., Arnaiz, A., Rosa-Diaz, I., González-Melendi, P., Romero-Hernandez, G., Ojeda-Martinez, D. A., Garcia, A., Contreras, E., Martinez, M. and Diaz, I. (2020). Plant defenses against Tetranychus urticae: Mind the gaps. Plants, 9(4): 464.
-
Saravanan, K. R., Vishnupriya, V., Prakash, M. and Anandan R. (2019). Variability, heritability and genetic advance in tomato genotypes. Indian Journal of Agricultural Research, 53(1): 92-95.
-
Savi, P. J., de Moraes, G. J., Carvalho, R. F. and de Andrade, D. J. (2022). Bottom-up effects of breeding tomato genotypes on behavioral responses and performance of Tetranychus evansi population. Journal of Pesticide Science, 95(3): 1-15.
-
Snyder, J. and Min, C. (2008). Insect resistance in Lycopersicon hirsutum LA2329-current status. International Symposium on Vegetable Production, Quality and Process Standardization in Chain: A Worldwide Perspective, 944, 14-17 October, Beijing, China.
-
Snyder, J. C., Antonious G. F. and Thacker, R. (2011). A sensitive bioassay for spider mite (Tetranychus urticae) repellency: A double bond makes a difference. Experimental and Applied Acarology, 55(3): 215-224.
-
Snyder, J. C., Guo, Z., Thacker, R., Goodman, J. P. and Pyrek, J. S. (1993). 2, 3-Dihydrofarnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider mites. Journal of Chemical Ecology, 19(2): 2981-2997.
-
Snyder, J. C., Thacker, R. R., Zhang, X. (2005). Genetic transfer of a two spotted spider mite (Acari: Tetranychidae) repellent in tomato hybrids. Journal of Economic Entomology, 98(5): 1710-1716.
-
Turhan A. and Özmen N (2021). Effects of chemical and organic fertilizer treatments on yield and quality traits of industrial tomato. Journal of Tekirdag Agricultural Faculty, 18 (2): 213-221.
-
Ulyshen M. D. and Shelton T. G. (2012). Evidence of cue synergism in termite corpse response behavior. Naturwissenschaften, 99(2): 89-93.
-
Wang E., Brown H. E., Rebetzke, G. J., Zhao, Z., Zheng, B. and Chapman, S. C. (2019). Improving process-based crop models to better capture genotype×environment×management interactions. Journal of Experimental Botany, 70(9): 2389-2401.
-
Weinblum, N., Cna'Ani, A., Yaakov, B., Sadeh, A., Avraham, L., Opatovsky, I. and Tzin V. (2021). Tomato cultivars resistant or susceptible to spider mites differ in their biosynthesis and metabolic profile of the monoterpenoid pathway. Frontiers in Plant Science, 12: 630155.
-
Weston, P. A. and Snyder, J. C. (1990). Thumbtack bioassay: A quick method for measuring plant resistance to two spotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology, 83(2), 500-504.
-
Xie, Q., Tian, Y., Hu, Z., Zhang, L., Tang, B., Wang, Y., Li, J. and Chen G. (2021). Novel translational and phosphorylation modification regulation mechanisms of tomato (Solanum lycopersicum) fruit ripening revealed by integrative proteomics and phosphoproteomics. International Journal of Molecular Sciences, 22(21), 11782.
-
Zanin, D. S., de Resende, J. T. V., Zeist, A. R., de Lima Filho, R. B., Gabriel, A., Diniz, F. C. P., Perrud, A. C. and Morales, R. G. F. (2021). Selection of F2BC1 tomato genotypes for processing containing high levels of zingiberene and resistance to tomato pinworms. Phytoparasitica, 49(2): 265-274.
-
Zanin, D. S., Resende, J. T. V., Zeist, A. R., Oliveira, J. R.F., Henschel, J. M. and Lima Filho, R. B. (2018). Selection of processing tomato genotypes resistant to two-spotted spider mite. Horticultura Brasileira, 36(2): 271-275.