Araştırma Makalesi
BibTex RIS Kaynak Göster

Taze Hurmaların Kurutma Özellikleri: Renk ve Enerji Tüketimi Üzerindeki Etkileri

Yıl 2025, Cilt: 22 Sayı: 3, 767 - 782, 29.09.2025
https://doi.org/10.33462/jotaf.1604217

Öz

Trabzon hurması (Diospyros kaki) Türkiye'de önemli bir yere sahip meyvedir. Yılın belirli zamanlarında taze olarak tüketilen bir meyve olduğu için ürün muhafazası bakımından önemli bir potansiyele sahiptir. Kurutma, ürünleri muhafaza etmek için en yaygın kullanılan yöntemdir. Kurutma işlemlerinde önemli ölçüde enerji tüketimi gerektirir. Kurutma süresi ve kullanılan yöntem hem enerji tüketimi hem de ürün kalitesi üzerinde doğrudan bir etkiye sahiptir. Trabzon hurması, raf ömrünün uzatılması için kurutulması gereken besin değeri yüksek bir meyvedir. Bu çalışmada, yaklaşık olarak %73.8 yaş bazda ilk nem içeriğine sahip Trabzon hurması dilimlerinin mikrodalga fırında kurutma davranışı incelenmiştir. Nem difüzyonu, büzülme, renk değişimi ve rehidrasyon özellikleri mikrodalga gücünün ve dilim kalınlığının bir fonksiyonu olarak incelenmiştir. Örnekler iki farklı kalınlıkta (5 mm ve 9 mm) hazırlanmış ve üç mikrodalga güç seviyesinde (350 W, 460 W ve 600 W) test edilmiştir. Nem içeriğinin zaman içindeki değişimini modellemek için Matlab programındaki eğri uydurma araçları kullanılmıştır. Çalışmada altı model kullanılmıştır: Lewis, Page, Henderson ve Pabis, Logaritmik, Midilli, Wang ve Singh. Logaritmik model Trabzon hurması kurutma kinetiğini en iyi şekilde tanımlamaktadır. Kurutulmuş ürünlerin kalitesi, renk ölçümleri (L*, a*, b*), renk farkı (ΔE), kahverengileşme indeksi (BI), kroma ve ton açısı ile rehidrasyon ve büzülme oranları dahil olmak üzere çeşitli parametreler aracılığıyla değerlendirilmiştir. Trabzon hurmasının etkili difüzyon katsayılarının 2.27 × 10-10 ila 9.08 × 10-10 m²/s arasında değiştiği bulunmuştur. Spesifik enerji tüketimi 2.21 ila 3.028 kWh/kg arasında değişmiştir. En düşük ΔE değeri 460 W'da kurutulan örneklerde gözlenmiştir, bu da en yüksek gücün (460 W) taze Trabzon hurmasının doğal rengini etkili bir şekilde koruduğunu ve kurutma işlemi sırasında kahverengileşme reaksiyonlarını en aza indirdiğini göstermektedir. Sonuçlar, uygulanan mikrodalga enerjisinin Trabzon hurmasının kurutma sürecini ve gözlemlenen değişiklikleri önemli ölçüde etkilediğini göstermiştir.

Etik Beyan

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

Kaynakça

  • Bi, L., Liu, B., Yang, Z., Zou, T., Zhao, S. and Theodorakis, P. E. (2023). Analysis of heat and moisture transfer in the microwave drying of potatoes. Drying Technology, 41(9): 1397–1410. https://doi.org/10.1080/07373937.2022.2155972
  • Brasiello, A., Adiletta, G., Russo, P., Crescitelli, S., Albanese, D. and Di Matteo, M. (2013). Mathematical modeling of eggplant drying: Shrinkage effect. Journal of Food Engineering, 114(1): 99–105. https://doi.org/10.1016/j.jfoodeng.2012.07.031
  • Brooker, D. B., Bakker-Arkema, F. W. and Hall, W. (1992). Drying and Storage of Grains and Oilseeds. Van Nostrand Reinhold, New York., U. S. A.
  • Cárcel, J. A., García-Pérez, J. V., Riera, E. and Mulet, A. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1): 185–193. https://doi.org/10.1080/07373930601161070
  • Çelen, S. (2019). Effect of microwave drying on the drying characteristics, color, microstructure, and thermal properties of Trabzon persimmon. Foods, 8(2): 7–9. https://doi.org/10.3390/foods8020084
  • Çelik, E., Parlak, N. and Çay, Y. (2021). Experimental and numerical study on drying behavior of CORN grain. Heat and Mass Transfer, 57(2): 321–332. https://doi.org/10.1007/s00231-020-02954-2
  • Cervera-Chiner, L., Vilhena, N. Q., Larrea, V., Moraga, G. and Salvador, A. (2024). Influence of temperature on ‘Rojo Brillante’ persimmon drying. Quality characteristics and drying kinetics. Lwt, 197(November 2023): 115902. https://doi.org/10.1016/j.lwt.2024.115902
  • Dağdeviren, A., Acar, B., Alhammadi, A., Roshanaeı, K., Coşkun, T., İnanç, Ö. and Özkaymak, P. D. M. (2023). Freeze-drying of persimmon (Diospyros Kaki) slices investigation of drying characteristics. Journal of Polytechnic, 26(2): 487–494. https://doi.org/10.2339/politeknik.949139
  • Dehghannya, J., Kadkhodaei, S., Heshmati, M. K. and Ghanbarzadeh, B. (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption. Ultrasonics, 96: 104–122. https://doi.org/10.1016/j.ultras.2019.02.005
  • Demiray, E. and Tulek, Y. (2017). The effect of pretreatments on air drying characteristics of persimmons. Heat and Mass Transfer, 53(1): 99–106. https://doi.org/10.1007/s00231-016-1797-2
  • Deng, Y. and Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Science and Technology, 41(9): 1575–1585. https://doi.org/10.1016/j.lwt.2007.10.018
  • Doymaz, İ. (2012). Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Conversion and Management, 56: 199–205. https://doi.org/10.1016/j.enconman.2011.11.027
  • Dursun, S. K., Aksüt, B., Polatci, H. and Taşova, M. (2023). Development of a temperature controlled microwave dryer and effect of mushroom drying on energy and quality values. Journal of Tekirdag Agricultural Faculty, 20(3): 561–573. https://doi.org/10.33462/jotaf.1119197
  • Ghodake, H. M., Goswami, T. K. and Chakraverty, A. (2006). Mathematical modeling of withering characteristics of tea leaves. Drying Technology, 24(2): 159–164. https://doi.org/10.1080/07373930600558979
  • González, C. M., Gil, R., Moraga, G. and Salvador, A. (2021). Natural drying of astringent and non-astringent persimmon “rojo brillante”. drying kinetics and physico-chemical properties. Foods, 10(3): 647. https://doi.org/10.3390/foods10030647
  • Haneef, N., Sohail., Ahmad, A. and Asad, M. J. (2021). Effects of edible aloe-pectin coating and hot-aır drying on color, texture and microstructure of dried mango slices. The Journal of Animal and Plant Sciences, 32(1):292-300. https://doi.org/10.36899/JAPS.2022.1.0424
  • Hassan-Beygi, S., Aghbashlo, M., Kianmehr, M., and Massah, J. (2009). Drying characteristics of walnut (Juglans regia L.) during convection drying. International Agrophysics, 23(2): 129–135.
  • Huang, L., Chen, H., Zhang, M., Liu, W., Mujumdar, A. S. and Yu, D. (2022). Simulation of temperature during vacuum microwave drying of mixed potato and apple slices. Drying Technology, 40(15): 3177–3185. https://doi.org/10.1080/07373937.2021.2006214
  • İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M. and Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7): 2101–2112. https://doi.org/10.1007/s00231-018-2294-6
  • Jesus, M. S., Araujo, H. C. S., Denadai, M., Sandes, R. D. D., Nogueira, J. P., Leite Neta, M. T. S. and Narain, N. (2023). Effect of different drying methods on the phenolic and volatile compounds of persimmon (Diospyros kaki L.). Journal of Food Measurement and Characterization, 17(3): 2576–2594. https://doi.org/10.1007/s11694-022-01803-6
  • Jia, X., Luo, X., Nakako, K. and Takahisa, N. (2024). Effects of moisture content and storage method on the physical properties of dried persimmon during frozen storage. Italian Journal of Food Science, 36(3): 141–150. https://doi.org/10.15586/ijfs.v36i3.2525
  • Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K. and Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118: 67–76. https://doi.org/10.1016/j.fbp.2019.08.018
  • Kamiloğlu, A., Elbir, T., Dölek, M. and Eşrefoğlu, E. S. (2023). Comparative evaluation of different drying techniques for beef meat. Journal of Food Process Engineering, 46(12). https://doi.org/10.1111/jfpe.14441
  • Karaaslan, S. (2014). Determining of a drying model for microwave drying of Trabzon persimmon. Süleyman Demirel University Faculty of Agriculture Journal, 9(1): 8–15.
  • Karaaslan, S. (2016). Investigation of drying parameters of broccoli during fan-assisted microwave, air and a combined microwave/air drying. Journal of Animal and Plant Sciences, 26(1): 123–130.
  • Karacabey, E., Aktas, T., Taseri, L. and Uysal Seçkin, G. (2020). Examination of different drying methods in sultana seedless grapes in terms of drying kinetics, energy consumption and product quality. Journal of Tekirdag Agricultural Faculty, 17(1): 53–65. https://doi.org/10.33462/jotaf.578962
  • Karimi, S., Layeghinia, N. and Abbasi, H. (2021). Microwave pretreatment followed by associated microwave-hot air drying of Gundelia tournefortii L.: drying kinetics, energy consumption and quality characteristics. Heat and Mass Transfer, 57(1): 133–146. https://doi.org/10.1007/s00231-020-02948-0
  • Kaveh, M., Abbaspour-Gilandeh, Y., Chayjan, R. A., Taghinezhad, E. and Mohammadigol, R. (2018). Mass transfer, physical, and mechanical characteristics of terebinth fruit (Pistacia atlantica L.) under convective infrared microwave drying. Heat and Mass Transfer, 54(7): 1879–1899. https://doi.org/10.1007/s00231-018-2287-5
  • Kaveh, M., Golpour, I., Gonçalves, J. C., Ghafouri, S. and Guiné, R. (2021). Determination of drying kinetics, specific energy consumption, shrinkage, and colour properties of pomegranate arils submitted to microwave and convective drying. Open Agriculture, 6(1): 230–242. https://doi.org/10.1515/opag-2020-0209
  • Kayacan, S., Karasu, S., Akman, P. K., Goktas, H., Doymaz, I., and Sagdic, O. (2020). Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT, 118: 108830. https://doi.org/10.1016/j.lwt.2019.108830
  • Kaymak-Ertekin, F., and Gedik, A. (2005). Kinetic modelling of quality deterioration in onions during drying and storage. Journal of Food Engineering, 68(4): 443–453. https://doi.org/10.1016/j.jfoodeng.2004.06.022
  • Khaled, A. Y., Kabutey, A., Selvi, K. Ç., Mizera, Č., Hrabe, P. and Herák, D. (2020). Application of computational intelligence in describing the drying kinetics of persimmon fruit (Diospyros kaki) during vacuum and hot air drying process. Processes, 8(5): 544. https://doi.org/10.3390/pr8050544
  • Kipcak, A. S. and İsmail, O. (2021). Microwave drying of fish, chicken and beef samples. Journal of Food Science and Technology, 58(1): 281–291. https://doi.org/10.1007/s13197-020-04540-0
  • Koç, B., Eren, İ., and Kaymak Ertekin, F. (2008). Modelling bulk density, porosity and shrinkage of quince during drying: The effect of drying method. Journal of Food Engineering, 85(3): 340–349. https://doi.org/10.1016/j.jfoodeng.2007.07.030
  • Koç, M., Elmas, F. and Varhan, E. (2019). Drying of fig with microwave and hot air assisted foam-mat drying method. Turkish Journal of Agriculture - Food Science and Technology, 7(2): 291–300. https://doi.org/10.24925/turjaf.v7i2.291-300.2272
  • Lapczynska-Kordon, B., S. Lis, and M. Tomasik. (2019). Control of the microwave drying process of selected fruits and vegetables. Przeglad Elektrotechniczny, 95(3): 74-77. https://doi.org/10.15199/48.2019.03.18
  • Łechtańska, J. M., Szadzińska, J. and Kowalski, S. J. (2015). Microwave- and infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification, 98: 155–164. https://doi.org/10.1016/j.cep.2015.10.001
  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2): 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0
  • McMinn, W. A. M. (2006). Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. Journal of Food Engineering, 72(2): 113–123. https://doi.org/10.1016/j.jfoodeng.2004.11.025
  • Midilli, A. and Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7): 1111–1122. https://doi.org/10.1016/S0196-8904(02)00099-7
  • Miraei Ashtiani, S.-H., Sturm, B. and Nasirahmadi, A. (2018). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer, 54(4): 915–927. https://doi.org/10.1007/s00231-017-2187-0
  • Qin, Y., Duan, Z., Zhou, S., and Wei, Z. (2022). Effect of intermittent microwave drying on nutritional quality and drying characteristics of persimmon slices. Food Science and Technology (Brazil), 42: 1–8. https://doi.org/10.1590/fst.37422
  • Rodriguez, A., Bruno, E., Paola, C., Campañone, L., and Mascheroni, R. H. (2019). Experimental study of dehydration processes of raspberries (Rubus Idaeus) with microwave and solar drying. Food Science and Technology, 39(2): 336–343. https://doi.org/10.1590/fst.29117
  • Sampaio, R. M., Neto, J. P. M., Perez, V. H., Marcos, S. K., Boizan, M. A., and Da Silva, L. R. (2017). Mathematical modeling of drying kinetics of persimmon fruits (Diospyros kaki cv. Fuyu). Journal of Food Processing and Preservation, 41(1): e12789. https://doi.org/10.1111/jfpp.12789
  • Senadeera, W., Adiletta, G., Önal, B., Di Matteo, M. and Russo, P. (2020). Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods, 9(1): 5–7. https://doi.org/10.3390/foods9010101
  • Seremet (Ceclu), L., Botez, E., Nistor, O.-V., Andronoiu, D. G. and Mocanu, G.-D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195: 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125
  • Taghinezhad, E., Kaveh, M., Jahanbakhshi, A. and Golpour, I. (2020). Use of artificial intelligence for the estimation of effective moisture diffusivity, specific energy consumption, color and shrinkage in quince drying. Journal of Food Process Engineering, 43(4). https://doi.org/10.1111/jfpe.13358
  • Taşova, M. and Dursun, S. K. (2023). Effect of pretreatment on drying properties of Golden delicious L. Apple. Journal of Tekirdag Agricultural Faculty, 20(2): 374–386. https://doi.org/10.33462/jotaf.1117872
  • Tülek, Y and Demiray, E. (2014). Effect of hot air drying and different pretreatments on color and drying characteristics of persimmons. Journal of Agricultural Sciences, 20(1): 27–37. https://doi.org/10.1501/Tarimbil_0000001262
  • Wang, C. and Singh, R. (1978). Use of variable equilibrium moisture content in modeling rice drying. Agricultural and Food Sciences, 11, 668–672.
  • Wu, T., Duan, Z. and Wang, C. (2024). Effects of microwave drying on color change, phenolic substance content and phenolase activity of different parts of persimmon slices. Journal of Food Measurement and Characterization, 18(1): 357–369. https://doi.org/10.1007/s11694-023-02162-6
  • Xu, W., Cao, X., Zhu, G., Xia, Z. Wang, D. (2020). Effect of temperature difference on the aroma and quality of carrots processed through microwave drying combined with hot air drying. Food and Bioproducts Processing, 120: 58–68. https://doi.org/10.1016/j.fbp.2019.12.006
  • Yıldız Akbulut, E. (2021). Investigation of some physicochemical and microbiological quality parameters of persimmon (Diospyros kaki) and kiwi (Actinidia deliciosa) dried in different conditions. (M.Sc. Thesis) Afyon Kocatepe University, Institute of Science, Afyon, Türkiye.
  • Yildiz, E., Yilmaz, A., Gurbuz, O. and Alibas, I. (2024). Effect of drying methods and pre-treatments on bioactive potential of persimmon (Diospyros kaki L.). Journal of Food Measurement and Characterization, 18(3): 2014–2029. https://doi.org/10.1007/s11694-023-02252-5
  • Yildiz, Z. and Reyhan, S. (2023). Optimizing drying conditions of lemon rings combined with microwave drying and osmotic dehydration. Journal of Tekirdag Agricultural Faculty, 20(4), 845–856. https://doi.org/10.33462/jotaf.1222365
  • Zhao, C. C., Ameer, K. and Eun, J. B. (2021). Effects of various drying conditions and methods on drying kinetics and retention of bioactive compounds in sliced persimmon. LWT, 143: 111149. https://doi.org/10.1016/j.lwt.2021.111149

Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption

Yıl 2025, Cilt: 22 Sayı: 3, 767 - 782, 29.09.2025
https://doi.org/10.33462/jotaf.1604217

Öz

Persimmon (Diospyros kaki) constitutes a notable fruit in Türkiye. The fruit is consumed in its fresh state during specific periods of the year, which renders it of significant importance in the context of product preservation. Drying is the most commonly used method for preserving products. Drying requires significant energy consumption. The drying time and method employed have a direct impact on both energy consumption and product quality. Persimmon is a nutrient-dense fruit that needs to be dried for extended shelf life. This study investigated the drying behavior of persimmon slices having an initial moisture content of approximately %73.8 wet basis in a microwave oven. Moisture diffusion, shrinkage, color change and rehydration properties were investigated as a function of microwave power and slice thickness. Samples were prepared at two different thicknesses (5 mm and 9 mm) and tested at three microwave power levels (350 W, 460 W and 600 W). Curve fitting tools in the Matlab programmer were used to model the variation in moisture content over time. The study utilised six models: Lewis, Page, Henderson and Pabis, Logarithmic, Midilli, Wang and Singh. The logarithmic model has been demonstrated to provide the most accurate description of persimmon drying kinetics. The dried products' quality was evaluated through various parameters, including color metrics (L*, a*, b*), color difference (ΔE), browning index (BI), chroma, and hue angle, along with rehydration and shrinkage ratios. The effective diffusion coefficients of persimmon were found to range from 2.27 × 10-10 to 9.08 × 10-10 m²/s. Specific energy consumption ranged from 2.21 to 3.028 kWh/kg. The lowest ΔE value was observed in the samples dried at 460 W, suggesting that the highest power (460 W) effectively preserved the natural color of fresh persimmon and minimized browning reactions during the drying process. Results indicated that the applied microwave energy significantly influenced the drying process of the persimmon and the observed changes.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Bi, L., Liu, B., Yang, Z., Zou, T., Zhao, S. and Theodorakis, P. E. (2023). Analysis of heat and moisture transfer in the microwave drying of potatoes. Drying Technology, 41(9): 1397–1410. https://doi.org/10.1080/07373937.2022.2155972
  • Brasiello, A., Adiletta, G., Russo, P., Crescitelli, S., Albanese, D. and Di Matteo, M. (2013). Mathematical modeling of eggplant drying: Shrinkage effect. Journal of Food Engineering, 114(1): 99–105. https://doi.org/10.1016/j.jfoodeng.2012.07.031
  • Brooker, D. B., Bakker-Arkema, F. W. and Hall, W. (1992). Drying and Storage of Grains and Oilseeds. Van Nostrand Reinhold, New York., U. S. A.
  • Cárcel, J. A., García-Pérez, J. V., Riera, E. and Mulet, A. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1): 185–193. https://doi.org/10.1080/07373930601161070
  • Çelen, S. (2019). Effect of microwave drying on the drying characteristics, color, microstructure, and thermal properties of Trabzon persimmon. Foods, 8(2): 7–9. https://doi.org/10.3390/foods8020084
  • Çelik, E., Parlak, N. and Çay, Y. (2021). Experimental and numerical study on drying behavior of CORN grain. Heat and Mass Transfer, 57(2): 321–332. https://doi.org/10.1007/s00231-020-02954-2
  • Cervera-Chiner, L., Vilhena, N. Q., Larrea, V., Moraga, G. and Salvador, A. (2024). Influence of temperature on ‘Rojo Brillante’ persimmon drying. Quality characteristics and drying kinetics. Lwt, 197(November 2023): 115902. https://doi.org/10.1016/j.lwt.2024.115902
  • Dağdeviren, A., Acar, B., Alhammadi, A., Roshanaeı, K., Coşkun, T., İnanç, Ö. and Özkaymak, P. D. M. (2023). Freeze-drying of persimmon (Diospyros Kaki) slices investigation of drying characteristics. Journal of Polytechnic, 26(2): 487–494. https://doi.org/10.2339/politeknik.949139
  • Dehghannya, J., Kadkhodaei, S., Heshmati, M. K. and Ghanbarzadeh, B. (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption. Ultrasonics, 96: 104–122. https://doi.org/10.1016/j.ultras.2019.02.005
  • Demiray, E. and Tulek, Y. (2017). The effect of pretreatments on air drying characteristics of persimmons. Heat and Mass Transfer, 53(1): 99–106. https://doi.org/10.1007/s00231-016-1797-2
  • Deng, Y. and Zhao, Y. (2008). Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Science and Technology, 41(9): 1575–1585. https://doi.org/10.1016/j.lwt.2007.10.018
  • Doymaz, İ. (2012). Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Conversion and Management, 56: 199–205. https://doi.org/10.1016/j.enconman.2011.11.027
  • Dursun, S. K., Aksüt, B., Polatci, H. and Taşova, M. (2023). Development of a temperature controlled microwave dryer and effect of mushroom drying on energy and quality values. Journal of Tekirdag Agricultural Faculty, 20(3): 561–573. https://doi.org/10.33462/jotaf.1119197
  • Ghodake, H. M., Goswami, T. K. and Chakraverty, A. (2006). Mathematical modeling of withering characteristics of tea leaves. Drying Technology, 24(2): 159–164. https://doi.org/10.1080/07373930600558979
  • González, C. M., Gil, R., Moraga, G. and Salvador, A. (2021). Natural drying of astringent and non-astringent persimmon “rojo brillante”. drying kinetics and physico-chemical properties. Foods, 10(3): 647. https://doi.org/10.3390/foods10030647
  • Haneef, N., Sohail., Ahmad, A. and Asad, M. J. (2021). Effects of edible aloe-pectin coating and hot-aır drying on color, texture and microstructure of dried mango slices. The Journal of Animal and Plant Sciences, 32(1):292-300. https://doi.org/10.36899/JAPS.2022.1.0424
  • Hassan-Beygi, S., Aghbashlo, M., Kianmehr, M., and Massah, J. (2009). Drying characteristics of walnut (Juglans regia L.) during convection drying. International Agrophysics, 23(2): 129–135.
  • Huang, L., Chen, H., Zhang, M., Liu, W., Mujumdar, A. S. and Yu, D. (2022). Simulation of temperature during vacuum microwave drying of mixed potato and apple slices. Drying Technology, 40(15): 3177–3185. https://doi.org/10.1080/07373937.2021.2006214
  • İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M. and Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7): 2101–2112. https://doi.org/10.1007/s00231-018-2294-6
  • Jesus, M. S., Araujo, H. C. S., Denadai, M., Sandes, R. D. D., Nogueira, J. P., Leite Neta, M. T. S. and Narain, N. (2023). Effect of different drying methods on the phenolic and volatile compounds of persimmon (Diospyros kaki L.). Journal of Food Measurement and Characterization, 17(3): 2576–2594. https://doi.org/10.1007/s11694-022-01803-6
  • Jia, X., Luo, X., Nakako, K. and Takahisa, N. (2024). Effects of moisture content and storage method on the physical properties of dried persimmon during frozen storage. Italian Journal of Food Science, 36(3): 141–150. https://doi.org/10.15586/ijfs.v36i3.2525
  • Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K. and Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118: 67–76. https://doi.org/10.1016/j.fbp.2019.08.018
  • Kamiloğlu, A., Elbir, T., Dölek, M. and Eşrefoğlu, E. S. (2023). Comparative evaluation of different drying techniques for beef meat. Journal of Food Process Engineering, 46(12). https://doi.org/10.1111/jfpe.14441
  • Karaaslan, S. (2014). Determining of a drying model for microwave drying of Trabzon persimmon. Süleyman Demirel University Faculty of Agriculture Journal, 9(1): 8–15.
  • Karaaslan, S. (2016). Investigation of drying parameters of broccoli during fan-assisted microwave, air and a combined microwave/air drying. Journal of Animal and Plant Sciences, 26(1): 123–130.
  • Karacabey, E., Aktas, T., Taseri, L. and Uysal Seçkin, G. (2020). Examination of different drying methods in sultana seedless grapes in terms of drying kinetics, energy consumption and product quality. Journal of Tekirdag Agricultural Faculty, 17(1): 53–65. https://doi.org/10.33462/jotaf.578962
  • Karimi, S., Layeghinia, N. and Abbasi, H. (2021). Microwave pretreatment followed by associated microwave-hot air drying of Gundelia tournefortii L.: drying kinetics, energy consumption and quality characteristics. Heat and Mass Transfer, 57(1): 133–146. https://doi.org/10.1007/s00231-020-02948-0
  • Kaveh, M., Abbaspour-Gilandeh, Y., Chayjan, R. A., Taghinezhad, E. and Mohammadigol, R. (2018). Mass transfer, physical, and mechanical characteristics of terebinth fruit (Pistacia atlantica L.) under convective infrared microwave drying. Heat and Mass Transfer, 54(7): 1879–1899. https://doi.org/10.1007/s00231-018-2287-5
  • Kaveh, M., Golpour, I., Gonçalves, J. C., Ghafouri, S. and Guiné, R. (2021). Determination of drying kinetics, specific energy consumption, shrinkage, and colour properties of pomegranate arils submitted to microwave and convective drying. Open Agriculture, 6(1): 230–242. https://doi.org/10.1515/opag-2020-0209
  • Kayacan, S., Karasu, S., Akman, P. K., Goktas, H., Doymaz, I., and Sagdic, O. (2020). Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT, 118: 108830. https://doi.org/10.1016/j.lwt.2019.108830
  • Kaymak-Ertekin, F., and Gedik, A. (2005). Kinetic modelling of quality deterioration in onions during drying and storage. Journal of Food Engineering, 68(4): 443–453. https://doi.org/10.1016/j.jfoodeng.2004.06.022
  • Khaled, A. Y., Kabutey, A., Selvi, K. Ç., Mizera, Č., Hrabe, P. and Herák, D. (2020). Application of computational intelligence in describing the drying kinetics of persimmon fruit (Diospyros kaki) during vacuum and hot air drying process. Processes, 8(5): 544. https://doi.org/10.3390/pr8050544
  • Kipcak, A. S. and İsmail, O. (2021). Microwave drying of fish, chicken and beef samples. Journal of Food Science and Technology, 58(1): 281–291. https://doi.org/10.1007/s13197-020-04540-0
  • Koç, B., Eren, İ., and Kaymak Ertekin, F. (2008). Modelling bulk density, porosity and shrinkage of quince during drying: The effect of drying method. Journal of Food Engineering, 85(3): 340–349. https://doi.org/10.1016/j.jfoodeng.2007.07.030
  • Koç, M., Elmas, F. and Varhan, E. (2019). Drying of fig with microwave and hot air assisted foam-mat drying method. Turkish Journal of Agriculture - Food Science and Technology, 7(2): 291–300. https://doi.org/10.24925/turjaf.v7i2.291-300.2272
  • Lapczynska-Kordon, B., S. Lis, and M. Tomasik. (2019). Control of the microwave drying process of selected fruits and vegetables. Przeglad Elektrotechniczny, 95(3): 74-77. https://doi.org/10.15199/48.2019.03.18
  • Łechtańska, J. M., Szadzińska, J. and Kowalski, S. J. (2015). Microwave- and infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification, 98: 155–164. https://doi.org/10.1016/j.cep.2015.10.001
  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2): 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0
  • McMinn, W. A. M. (2006). Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. Journal of Food Engineering, 72(2): 113–123. https://doi.org/10.1016/j.jfoodeng.2004.11.025
  • Midilli, A. and Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7): 1111–1122. https://doi.org/10.1016/S0196-8904(02)00099-7
  • Miraei Ashtiani, S.-H., Sturm, B. and Nasirahmadi, A. (2018). Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat and Mass Transfer, 54(4): 915–927. https://doi.org/10.1007/s00231-017-2187-0
  • Qin, Y., Duan, Z., Zhou, S., and Wei, Z. (2022). Effect of intermittent microwave drying on nutritional quality and drying characteristics of persimmon slices. Food Science and Technology (Brazil), 42: 1–8. https://doi.org/10.1590/fst.37422
  • Rodriguez, A., Bruno, E., Paola, C., Campañone, L., and Mascheroni, R. H. (2019). Experimental study of dehydration processes of raspberries (Rubus Idaeus) with microwave and solar drying. Food Science and Technology, 39(2): 336–343. https://doi.org/10.1590/fst.29117
  • Sampaio, R. M., Neto, J. P. M., Perez, V. H., Marcos, S. K., Boizan, M. A., and Da Silva, L. R. (2017). Mathematical modeling of drying kinetics of persimmon fruits (Diospyros kaki cv. Fuyu). Journal of Food Processing and Preservation, 41(1): e12789. https://doi.org/10.1111/jfpp.12789
  • Senadeera, W., Adiletta, G., Önal, B., Di Matteo, M. and Russo, P. (2020). Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices. Foods, 9(1): 5–7. https://doi.org/10.3390/foods9010101
  • Seremet (Ceclu), L., Botez, E., Nistor, O.-V., Andronoiu, D. G. and Mocanu, G.-D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195: 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125
  • Taghinezhad, E., Kaveh, M., Jahanbakhshi, A. and Golpour, I. (2020). Use of artificial intelligence for the estimation of effective moisture diffusivity, specific energy consumption, color and shrinkage in quince drying. Journal of Food Process Engineering, 43(4). https://doi.org/10.1111/jfpe.13358
  • Taşova, M. and Dursun, S. K. (2023). Effect of pretreatment on drying properties of Golden delicious L. Apple. Journal of Tekirdag Agricultural Faculty, 20(2): 374–386. https://doi.org/10.33462/jotaf.1117872
  • Tülek, Y and Demiray, E. (2014). Effect of hot air drying and different pretreatments on color and drying characteristics of persimmons. Journal of Agricultural Sciences, 20(1): 27–37. https://doi.org/10.1501/Tarimbil_0000001262
  • Wang, C. and Singh, R. (1978). Use of variable equilibrium moisture content in modeling rice drying. Agricultural and Food Sciences, 11, 668–672.
  • Wu, T., Duan, Z. and Wang, C. (2024). Effects of microwave drying on color change, phenolic substance content and phenolase activity of different parts of persimmon slices. Journal of Food Measurement and Characterization, 18(1): 357–369. https://doi.org/10.1007/s11694-023-02162-6
  • Xu, W., Cao, X., Zhu, G., Xia, Z. Wang, D. (2020). Effect of temperature difference on the aroma and quality of carrots processed through microwave drying combined with hot air drying. Food and Bioproducts Processing, 120: 58–68. https://doi.org/10.1016/j.fbp.2019.12.006
  • Yıldız Akbulut, E. (2021). Investigation of some physicochemical and microbiological quality parameters of persimmon (Diospyros kaki) and kiwi (Actinidia deliciosa) dried in different conditions. (M.Sc. Thesis) Afyon Kocatepe University, Institute of Science, Afyon, Türkiye.
  • Yildiz, E., Yilmaz, A., Gurbuz, O. and Alibas, I. (2024). Effect of drying methods and pre-treatments on bioactive potential of persimmon (Diospyros kaki L.). Journal of Food Measurement and Characterization, 18(3): 2014–2029. https://doi.org/10.1007/s11694-023-02252-5
  • Yildiz, Z. and Reyhan, S. (2023). Optimizing drying conditions of lemon rings combined with microwave drying and osmotic dehydration. Journal of Tekirdag Agricultural Faculty, 20(4), 845–856. https://doi.org/10.33462/jotaf.1222365
  • Zhao, C. C., Ameer, K. and Eun, J. B. (2021). Effects of various drying conditions and methods on drying kinetics and retention of bioactive compounds in sliced persimmon. LWT, 143: 111149. https://doi.org/10.1016/j.lwt.2021.111149
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyosistem
Bölüm Makaleler
Yazarlar

Emel Çelik 0009-0007-1589-9089

Nezaket Parlak 0000-0002-8469-2192

Erken Görünüm Tarihi 19 Eylül 2025
Yayımlanma Tarihi 29 Eylül 2025
Gönderilme Tarihi 19 Aralık 2024
Kabul Tarihi 23 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 3

Kaynak Göster

APA Çelik, E., & Parlak, N. (2025). Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption. Tekirdağ Ziraat Fakültesi Dergisi, 22(3), 767-782. https://doi.org/10.33462/jotaf.1604217
AMA Çelik E, Parlak N. Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption. JOTAF. Eylül 2025;22(3):767-782. doi:10.33462/jotaf.1604217
Chicago Çelik, Emel, ve Nezaket Parlak. “Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption”. Tekirdağ Ziraat Fakültesi Dergisi 22, sy. 3 (Eylül 2025): 767-82. https://doi.org/10.33462/jotaf.1604217.
EndNote Çelik E, Parlak N (01 Eylül 2025) Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption. Tekirdağ Ziraat Fakültesi Dergisi 22 3 767–782.
IEEE E. Çelik ve N. Parlak, “Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption”, JOTAF, c. 22, sy. 3, ss. 767–782, 2025, doi: 10.33462/jotaf.1604217.
ISNAD Çelik, Emel - Parlak, Nezaket. “Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption”. Tekirdağ Ziraat Fakültesi Dergisi 22/3 (Eylül2025), 767-782. https://doi.org/10.33462/jotaf.1604217.
JAMA Çelik E, Parlak N. Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption. JOTAF. 2025;22:767–782.
MLA Çelik, Emel ve Nezaket Parlak. “Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption”. Tekirdağ Ziraat Fakültesi Dergisi, c. 22, sy. 3, 2025, ss. 767-82, doi:10.33462/jotaf.1604217.
Vancouver Çelik E, Parlak N. Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy Consumption. JOTAF. 2025;22(3):767-82.