Relationship of SNPs in Octopamine and Tyramine Receptor Genes with Hygienic Behavior in Honey Bees and Their Effects on Breeding Process
Yıl 2025,
Cilt: 22 Sayı: 3, 811 - 825
Neslihan Özsoy
,
Banu Yücel
,
Metin Erdoğan
Öz
Hygienic behavior in honey bees is a critical for maintaining colony health, preventing the spread of diseases, and providing resistance to harmful parasites. This behavior is defined as the worker bees detecting diseased, dead or parasitized brood cells and removing and cleaning them from the honeycomb cells. This feature, which is the defense mechanism of the colony, has developed on a genetic basis in natural selection and controlled breeding processes. Therefore, understanding the genetic mechanisms of hygienic behavior has become an important research subject in honey bee breeding studies. Recent studies have shown that neurotransmitter systems and receptor genes in honeybees affect various social and cognitive processes, including hygienic behavior. It is known that biogenic amines, especially octopamine and tyramine, regulate the learning, memory, olfactory perception, decision-making mechanisms and social behaviors of bees. Octopamine receptor and tyramine receptor can have a direct effect on stress response, flight activity, foraging behavior and hygienic behavior by acting as stimulants in the nervous system. In this study, in order to understand the genetic basis of hygienic behavior in Efe ecotype honey bees (Apis mellifera anatoliaca), colonies showing hygienic and non-hygienic behavior were determined according to the pin-killed test. Then, single nucleotide polymorphisms (SNPs) were detected in the AmOA1 and AmTYR1 gene regions of worker bees belonging to these colonies. As a result of the sequence analysis, 10 polymorphisms were determined in the AmOA1 receptor gene and 11 polymorphisms were determined in the AmTYR1 receptor gene. However, no significant difference was observed in the distribution of these SNPs between colonies showing hygienic and non-hygienic behavior. These results indicate that there is no direct relationship between hygienic behavior in Efe Bees and SNPs in AmOA1 and AmTYR1 genes. Therefore, no differences were detected between colonies in terms of SNPs. The polymorphisms have not been reported before in Efe Bee and this contributes to the originality of the study. More comprehensive studies to be conducted in the future will increase the knowledge in this field and contribute to the development of new strategies for selecting colonies in terms of hygienic behavior in the beekeeping industry.
Etik Beyan
Since this study was conducted on an invertebrate species, Apis mellifera, approval from ethics committees was not required.
Destekleyen Kurum
This work was supported by the Republic of Türkiye Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (project no: (TAGEM/HAYSÜD/A/21/A4/P4/2518) and Ege University Research Foundation (project no: 75598).
Proje Numarası
TAGEM/HAYSÜD/A/21/A4/P4/2518
Teşekkür
This work was supported by the Republic of Türkiye Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (project no: (TAGEM/HAYSÜD/A/21/A4/P4/2518) and Ege University Research Foundation (project no: 75598).
Kaynakça
-
Ali, A. M., Lee, J. M., Yoshida, M., Sakashita, K., Torii, J., Kusakabe, T. and Hirashima, A. (2012). Expression and characterization of a recombinant Drosophila tyramine-β-hydroxylase in silkworm infected with recombinant baculovirus. Journal of Asia-Pacific Entomology, 15(4): 567-572.
-
Aonuma, H. and Watanabe, T. (2012). Changes in the content of brain biogenic amine associated with early colony establishment in the Queen of the ant. Formica japonica Plos One, 7(8): e43377.
-
Arathi, H. S., Ho, G. and Spivak, M. (2006). Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L., and implications for disease transmission. Animal Behavior, 72(2): 431-438.
-
Arechavaleta-Velasco, M. E., Hunt, G. J., Spivak, M. and Camacho-Rea, C. 2011. Binary trait loci that influence the expression of honey bee hygienic behavior. Revista Mexicana de Ciencias Pecuarias, 2(3): 238-298. (In Spanish)
-
Barron, A. B., Maleszka, J., Vander Meer, R. K., Robinson, G. E. and Maleszka, R. (2007). Comparing injection, feeding and topical application methods for treatment of honeybees with octopamine. Journal of Insect Physiology, 53(2): 187-194.
-
Behrends, A. and Scheiner, R. (2012). Octopamine improves learning in newly emerged bees but not in old foragers. Journal of Experimental Biology, 215(7): 1076-1083.
-
Bienefeld, K., Zautke, F. and Gupta, P. (2015). A novel method for undisturbed long-term observation of honey bee (Apis mellifera) behavior–illustrated by hygienic behavior towards varroa infestation. Journal of Apicultural Research, 54(5): 541-547.
-
Bischof, L. J. and Enan, E. E. (2004). Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochemistry and Molecular Biology, 34(6): 511-521.
-
Blenau, W. and Baumann, A. (2016). Octopaminergic and Tyraminergic Signaling in the Honeybee (Apis mellifera) brain: Behavioral, Pharmacological, and Molecular aspects. In: Trace Amines and Neurological Disorders, Potential Mechanisms and Risk Factors, Ed(s): Farooqui, T. and Farooqui, A. A., Academic Press, Elsevier, London, U. K.
-
Boutin, S., Alburaki, M., Mercier, P. L., Giovenazzo, P. and Derome, N. (2015). Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives. BMC Genomics, 16(1): 500.
-
Bozdeveci, A., Akpınar, R. K., Karaoğlu, Ş. A. (2024). Determination of the prevalence of honey bee diseases and parasites in samples from Sivas Province. Journal of Tekirdag Agricultural Faculty, 21(5): 1148-1160.
-
Braza, M. K. E., Gazmen, J. D. N., Yu, E. T. and Nellas, R. B. (2019). Ligand-induced conformational dynamics of a tyramine receptor from Sitophilus oryzae. Scientific Reports, 9(1): 1-14.
-
Brigaud, I., Grosmaître, X., François, M. C. and Jacquin-Joly, E. (2009). Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell and Tissue Research, 335(2): 455-463.
-
Büchler, R., Andonov, S., Bienefeld, K., Costa, C., Hatjina, F., Kezic, N., Kryger, P., Spivak, M., Uzunov, A. and Wilde, J. (2013). Standard methods for rearing and selection of Apis mellifera queens. Journal of Apicultural Research, 52(1): 1-30.
-
Dimić, D., Milanović, Ž., Jovanović, G., Sretenović, D., Milenković, D., Marković, Z. and Marković, J. D. (2020). Comparative antiradical activity and molecular Docking/Dynamics analysis of octopamine and norepinephrine: the role of OH groups. Computational Biology and Chemistry, 84: 107170.
-
Duportets, L., Barrozo, R. B., Bozzolan, F., Gaertner, C., Anton, S., Gadenne, C. and Debernard, S. (2010). Cloning of an octopamine/tyramine receptor and plasticity of its expression as a function of adult sexual maturation in the male moth Agrotis ipsilon. Insect Molecular Biology, 19(4): 489-499.
-
Enan, E. E. (2005). Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochemistry and Molecular Biology, 35(4): 309-321.
-
Farooqui, T. (2007). Octopamine-mediated neuromodulation of insect senses. Neurochemical Research, 32(9):1511-1529.
-
Farooqui, T. and Farooqui, A. A. (2010). Biogenic Amines: Pharmacological, Neurochemical and Molecular Aspects in The CNS. Nova Science Publishers, Inc., Hauppauge, NY, U.S.A.
-
Finetti, L., Roeder, T., Calò, G. and Bernacchia, G. (2021). The insect type 1 tyramine receptors: from structure to behavior. Insects, 12(4): 315.
-
Gainetdinov, R. R., Hoener, M. C., and Berry, M. D. (2018). Trace amines and their receptors. Pharmacological Reviews, 70(3): 549-620.
-
Goode, K., Huber, Z., Mesce, K. A. and Spivak, M. (2006). Hygienic behavior of the honey bee (Apis mellifera) is independent of sucrose responsiveness and foraging ontogeny. Hormones and Behavior, 49(3): 391-397.
-
Göze, İ. and Özdil, F. (2023). Genetic Diversity of Kırklareli Honey Bee (Apis mellifera L.) populations in Thrace region of Turkey: Identification of mitochondrial COI and ND5 gene regions. Journal of Tekirdag Agricultural Faculty, 20(4): 959-966.
-
Gramacho, K. P. and Spivak, M. (2003). Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior. Behavioral Ecology and Sociobiology, 54(5): 472-479.
-
Guo, X., Wang, Y., Sinakevitch, I., Lei, H., and Smith, B. H. (2018). Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. Journal of Insect Physiology, 111: 47-52.
-
Guzman, L. D., Rinderer, T. E., Stelzer, J. A., Beaman, L., Delatte, G. T. and Harper, C. (2002). Hygienic behavior of honey bees from far-eastern Russia. American Bee Journal, 142(1): 58-60.
-
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symposium Series, 41: 95-98
-
Harpur, B. A., Guarna, M. M., Huxter, E., Higo, H., Moon, K. M., Hoover, S. E., Ibrahim, A., Melathopoulos, A. P., Desai, S., Currie, R. W., Pernal, S. F., Foster, L. J. and Zayed, A. (2019). Integrative genomics reveals the genetics and evolution of the honey bee’s social immune system. Genome Biology and Evolution, 11(3): 937-948.
-
Invernizzi, C., Rivas, F. and Bettucci, L. (2011). Resistance to chalkbrood disease in Apis mellifera L. (Hymenoptera: Apidae) colonies with different hygienic behavior. Neotropical Entomology, 40: 28-34.
-
Ishida, Y., and Ozaki, M. (2011). A putative octopamine/tyramine receptor mediating appetite in a hungry fly. Naturwissenschaften, 98(7): 635-638.
-
Ji, P., Xu, F., Huang, B., Li, Y., Li, L. and Zhang, G. (2016). Molecular characterization and functional analysis of a putative octopamine/tyramine receptor during the developmental stages of the pacific oyster. Crassostrea gigas, Plos One, 11(12): e0168574.
-
Ji, T., Yin, L., Liu, Z., Shen, F. and Shen, J. (2014). High-throughput sequencing identification of genes involved with Varroa destructor resistance in the eastern honeybee, Apis cerana. Genetics and Molecular Research, 13: 9086-9096.
-
Kalendar, R., Lee, D. and Schulman, A. H. (2009). FastPCR Software for PCR primer and probe design and repeat search. Genes. Genomes and Genomics, 3(1): 1-14.
-
Kastner, K. W., Shoue, D. A., Estiu, G. L., Wolford, J., Fuerst, M. F., Markley, L. D., Izaguirre, J. A. and McDowell, M. A. (2014). Characterization of the Anopheles gambiae octopamine receptor and discovery of potential agonists and antagonists using a combined computational-experimental approach. Malaria Journal, 13(1): 1-14.
-
Kekeçoğlu, M., Rasgele, P. G., Burğut, A. and Kambur, M. (2015). Development and determination of Yıgılca honey bee (Apis mellifera L.) with respect to hygienic behavior. Uludag Bee Journal, 15(2): 47-59. (In Turkish)
-
Kim, J. S., Kim, M. J., Kim, H. K., Vung, N. N. and Kim, I. (2019). Development of single nucleotide polymorphism markers specific to Apis mellifera (Hymenoptera: Apidae) line displaying high hygienic behavior against Varroa destructor, an ectoparasitic mite. Journal of Asia-Pacific Entomology, 22(4): 1031-1039.
-
Laidlaw, H. H. (1979). Contemporary Queen Rearing, Hamilton, İllinois: Dadant and Sons Publications, USA.
Lange, A. B. (2009). Tyramine: from octopamine precursor to neuroactive chemical in insects. General and Comparative Endocrinology, 162(1): 18-26.
-
Lazarov, S. B., Veleva, P. and Zhelyazkova, I. (2020). Statistical models for assessing the influence of hygienic behaviour of worker bees on the level of lysozyme and total protein content in their hаemolymph. Iranian Journal of Applied Animal Science, 10(2): 365-373.
-
Lee, S., Lim, S., Choi, Y. S., Lee, M. L. and Kwon, H. W. (2020). Volatile disease markers of American foulbrood-infected larvae in Apis mellifera. Journal of Insect Physiology, 122: 104040.
Li, H. M., Jiang, H. B., Gui, S. H., Liu, X. Q., Liu, H., Lu, X. P., Smagghe, G. and Wang, J. J. (2016). Characterization of a β-adrenergic-like octopamine receptor in the oriental fruit fly, Bactrocera dorsalis (Hendel). International Journal of Molecular Sciences, 17(10): 1577.
-
Masterman, R., Smith, B. H. and Spivak, M. (2000). Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L.) using proboscis extension reflex conditioning. Journal of Insect Behavior, 13(1): 87-101.
-
McAfee, A., Chapman, A., Iovinella, I., Gallagher-Kurtzke, Y., Collins, T. F., Higo, H., Madilao, L.L., Pelosi, P. and Foster, L. J. (2018). A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.). Scientific Reports, 8(1): 1-13.
-
McAfee, A., Collins, T. F., Madilao, L. L. and Foster, L. J. (2017). Odorant cues linked to social immunity induce lateralized antenna stimulation in honey bees (Apis mellifera L.). Scientific Reports, 7(1): 1-12.
-
Molaei, G., Paluzzi, J. P., Bendena, W. G. and Lange, A. B. (2005). Isolation, cloning, and tissue expression of a putative octopamine/tyramine receptor from locust visceral muscle tissues. Archives of Insect Biochemistry and Physiology, 59(3): 132-149.
-
Morfin, N., Goodwin, P. H., Correa-Benitez, A. and Guzman-Novoa, E. (2019). Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviors of honey bees. Apidologie, 50(5): 595-605.
-
Mustard, J. A., Kurshan, P. T., Hamilton, I. S., Blenau, W., and Mercer, A. R. (2005). Developmental expression of a tyramine receptor gene in the brain of the honey bee, Apis mellifera. Journal of Comparative Neurology, 483(1): 66-75.
-
Nicodemo, D., De Jong, D., Couto, R. H. N. and Malheiros, B. (2013). Honey bee lines selected for high propolis production also have superior hygienic behavior and increased honey and pollen stores. Genetics and Molecular Research, 12(4): 6931-6938.
-
Oskay, D., Kence, A., Kence, M., Doğaroğlu, M. and Tunca, R. İ. (2014). Project on development and breeding of colonies against varroa in Mugla honey bee (Apis mellifera anatoliaca). TAGEM (TAGEM/ 15 / AR-GE /19, 2015-2018) Project Report. (In Turkish)
-
Palacio, M. A., Figini, E. E., Ruffinengo, S. R., Rodriguez, E. M., Hoyo, M. L. and Bedascarrasbure, E. L. (2000). Changes in a population of Apis mellifera L. selected for hygienic behavior and its relation to brood disease tolerance. Apidologie, 31: 471-478.
-
Peng, T., Derstroff, D., Maus, L., Bauer, T. and Grüter, C. (2021). Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. Genes, Brain and Behavior, 20(4): e12722.
-
Pflüger, H. J. and Stevenson, P. A. (2005). Evolutionary aspects of octopaminergic systems with emphasis on arthropods. Arthropod Structure & Development, 34(3): 379-396.
-
Pinto, F. A., Puker, A., Barreto, L.M.R.C. and Message, D. (2012). The ectoparasite mite Varroa destructor Anderson and Trueman in southeastern Brazil apiaries: effects of the hygienic behavior of Africanized honey bees on infestation rates. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(5): 1194-1199.
-
Rasolofoarivao, H., Delatte, H., Raveloson-Ravaomanarivo, L. H., Reynaud, B. and Clémencet, J. (2015). Assessing hygienic behavior of Apis mellifera unicolor (Hymenoptera: Apidae), the endemic honey bee from Madagascar. Genetics and Molecular Research, 14(2): 5879-5889.
-
Rothenbuhler, W. C. (1964). Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. American Zoologist, 4(2): 111-123.
-
Scannapieco, A. C., Mannino, M. C., Soto, G., Palacio, M. A., Cladera, J. L. and Lanzavecchia, S. B. (2017). Expression analysis of genes putatively associated with hygienic behavior in selected stocks of Apis mellifera L. from Argentina. Insectes Sociaux, 64(4): 485-494.
-
Scheiner, R., Baumann, A. and Blenau, W. (2006). Aminergic control and modulation of honeybee behaviour. Current Neuropharmacology, 4(4): 259-276.
-
Schendzielorz, T., Schirmer, K., Stolte, P. and Steng, M. (2015). Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta. Plos One, 10(3): e0121230.
-
Sinakevitch, I., Mustard, J. A. and Smith, B. H. (2011). Distribution of the octopamine receptor AmOA1 in the honey bee brain. Plos One, 6(1): e14536.
-
Spivak, M. (1996). Honey bee hygienic behavior and defense against Varroa jacobsoni. Apidologie, 27(4): 245-260.
-
Spivak, M. and Danka, R. G. (2021). Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie, 52(1): 1-16.
-
Spivak, M. and Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6): 555-565.
-
Spivak, M., Masterman, R., Ross, R. and Mesce, K. A. (2003). Hygienic behavior in the honeybee (Apis mellifera L.) and the modulatory role of octopamine. Journal of Neurobiology, 55(3): 341-354.
-
Spötter, A., Gupta, P., Mayer, M., Reinsch, N. and Bienefeld, K. (2016). Genome-wide association study of a Varroa-specific defense behavior in honeybees (Apis mellifera). Journal of Heredity, 107(3): 220-227.
-
Swanson, J. A., Torto, B., Kells, S. A., Mesce, K. A., Tumlinson, J. H., Spivak, M. (2009). Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae. Journal of Chemical Ecology. 35: 1108-1116.
-
Thamm, M., Scholl, C., Reim, T., Grübel, K., Möller, K., Rössler, W. and Scheiner, R. (2017). Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain. Journal of Comparative Neurology, 525(12): 2615-2631.
-
Thamm, M., Wagler, K., Brockmann, A., and Scheiner, R. (2021). Tyramine 1 receptor distribution in the brain of corbiculate bees points to a conserved function, Brain. Behavior and Evolution, 96(1): 13-25.
-
Wagoner, K. M., Millar, J. G., Schal, C. and Rueppell, O. (2020). Cuticular pheromones stimulate hygienic behavior in the honey bee (Apis mellifera). Scientific Reports, 10(1): 1-11.
-
Wallberg, A., Schoenıng, C., Webster, M. T. and Hasselmann, M. (2017). Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honeybees. Plos Genetics, 13(5): e1006792.
-
Wang, Y., Amdam, G. V., Daniels, B. C., and Page Jr, R. E. (2020). Tyramine and its receptor TYR1 linked behavior QTL to reproductive physiology in honey bee workers (Apis mellifera). Journal of Insect Physiology, 126: 104093.
-
Wielewski, P., de Toledo, V.d.A.A., Martins, A.N., Costa-Maia, F.M., Faquinello, P., Lino-Lourenço, D.A., Ruvolo-Takasusuki, M. C. C., Toledo, V. A. and Lopes, D. A. (2012). Relationship between hygienic behavior and Varroa destructor mites in colonies producing honey or royal jelly. Sociobiology, 59(1): 251-274.
-
Xu, G., Chang, X. F., Gu, G. X., Jia, W. X., Guo, L., Huang, J. and Ye, G. Y. (2020). Molecular and pharmacological characterization of a β-adrenergic-like octopamine receptor from the green rice leafhopper Nephotettix cincticeps. Insect Biochemistry and Molecular Biology, 120: 103337.
-
Zhukovskaya, M. I., and Polyanovsky, A. D. (2017). Biogenic amines in insect antennae. Frontiers in Systems Neuroscience, 11(45): 1-9.
Bal Arılarında Oktopamin ve Tyramine Reseptör Genlerindeki SNP’lerin Hijyenik Davranışla İlişkisi ve Islah Sürecine Etkisi
Yıl 2025,
Cilt: 22 Sayı: 3, 811 - 825
Neslihan Özsoy
,
Banu Yücel
,
Metin Erdoğan
Öz
Bal arılarında hijyenik davranış, koloni sağlığının sürdürülmesi, hastalıkların yayılmasının önlenmesi ve zararlı parazitlere karşı direnç sağlanması açısından kritik bir öneme sahiptir. Bu davranış, işçi arıların hastalıklı, ölü veya parazitlenmiş yavru hücrelerini tespit ederek petek gözlerinden çıkarması ve temizlemesi olarak tanımlanmaktadır. Zararlılara karşı koloninin savunma mekanizmasını oluşturan bu özellik, doğal seçilim ve kontrollü ıslah süreçlerinde genetik bir temele dayanarak gelişmiştir. Bu nedenle, hijyenik davranışın genetik mekanizmalarının anlaşılması, bal arısı ıslah çalışmalarında önemli bir araştırma konusu haline gelmiştir. Son yıllarda yapılan çalışmalar, bal arılarındaki nörotransmitter sistemlerinin ve reseptör genlerinin, hijyenik davranış da dahil olmak üzere çeşitli sosyal ve bilişsel süreçleri etkilediğini göstermektedir. Özellikle oktopamin ve tyramin gibi biyojenik aminlerin, arıların öğrenme, hafıza, koku algısı, karar verme mekanizmaları ve sosyal davranışlarını düzenlediği bilinmektedir. Oktopamin reseptörü ve tyramine reseptörü, sinir sisteminde uyarıcı işlev görerek stres yanıtı, uçuş aktivitesi, besin arama davranışı ve hijyenik davranış üzerinde doğrudan etkiye sahip olabilmektedir. Bu çalışmada, Efe ekotipi bal arılarında (Apis mellifera anatoliaca) hijyenik davranışın genetik temellerini anlamak amacıyla pin-killed testi uygulanarak hijyenik davranış gösteren ve hijyenik davranış göstermeyen koloniler belirlenmiştir. Ardından, bu kolonilere ait işçi arıların AmOA1 ve AmTYR1 gen bölgelerinde tek nükleotid polimorfizmleri (SNP) tespit edilmeye çalışılmıştır. Dizi analizi sonucunda, AmOA1 reseptör geninde toplam 10 polimorfizm ve AmTYR1 reseptör geninde 11 polimorfizm belirlenmiştir. Ancak, yüksek ve düşük hijyenik davranış gösteren koloniler arasında bu SNP'lerin dağılımında belirgin bir fark gözlenmemiştir. Bu sonuçlar, Efe Arısı’nda hijyenik davranış ile AmOA1 ve AmTYR1 genlerindeki SNP’ler arasında doğrudan bir ilişki olmadığına işaret etmektedir. Daha önce Efe Arısı'nda bu genlerde herhangi bir polimorfizm rapor edilmemiş olması, bu çalışmanın özgün bir katkı sunduğunu göstermektedir. Gelecekte gerçekleştirilecek daha kapsamlı genomik çalışmalar, bu alandaki bilgi birikimini artırarak arıcılık sektöründe hijyenik davranışı yönünden kolonilerin seçilmesi için yeni stratejiler geliştirilmesine katkı sağlayacaktır.
Etik Beyan
Since this study was conducted on an invertebrate species, Apis mellifera, approval from ethics committees was not required.
Destekleyen Kurum
This work was supported by the Republic of Türkiye Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (project no: (TAGEM/HAYSÜD/A/21/A4/P4/2518) and Ege University Research Foundation (project no: 75598).
Proje Numarası
TAGEM/HAYSÜD/A/21/A4/P4/2518
Teşekkür
This work was supported by the Republic of Türkiye Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (project no: (TAGEM/HAYSÜD/A/21/A4/P4/2518) and Ege University Research Foundation (project no: 75598).
Kaynakça
-
Ali, A. M., Lee, J. M., Yoshida, M., Sakashita, K., Torii, J., Kusakabe, T. and Hirashima, A. (2012). Expression and characterization of a recombinant Drosophila tyramine-β-hydroxylase in silkworm infected with recombinant baculovirus. Journal of Asia-Pacific Entomology, 15(4): 567-572.
-
Aonuma, H. and Watanabe, T. (2012). Changes in the content of brain biogenic amine associated with early colony establishment in the Queen of the ant. Formica japonica Plos One, 7(8): e43377.
-
Arathi, H. S., Ho, G. and Spivak, M. (2006). Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L., and implications for disease transmission. Animal Behavior, 72(2): 431-438.
-
Arechavaleta-Velasco, M. E., Hunt, G. J., Spivak, M. and Camacho-Rea, C. 2011. Binary trait loci that influence the expression of honey bee hygienic behavior. Revista Mexicana de Ciencias Pecuarias, 2(3): 238-298. (In Spanish)
-
Barron, A. B., Maleszka, J., Vander Meer, R. K., Robinson, G. E. and Maleszka, R. (2007). Comparing injection, feeding and topical application methods for treatment of honeybees with octopamine. Journal of Insect Physiology, 53(2): 187-194.
-
Behrends, A. and Scheiner, R. (2012). Octopamine improves learning in newly emerged bees but not in old foragers. Journal of Experimental Biology, 215(7): 1076-1083.
-
Bienefeld, K., Zautke, F. and Gupta, P. (2015). A novel method for undisturbed long-term observation of honey bee (Apis mellifera) behavior–illustrated by hygienic behavior towards varroa infestation. Journal of Apicultural Research, 54(5): 541-547.
-
Bischof, L. J. and Enan, E. E. (2004). Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochemistry and Molecular Biology, 34(6): 511-521.
-
Blenau, W. and Baumann, A. (2016). Octopaminergic and Tyraminergic Signaling in the Honeybee (Apis mellifera) brain: Behavioral, Pharmacological, and Molecular aspects. In: Trace Amines and Neurological Disorders, Potential Mechanisms and Risk Factors, Ed(s): Farooqui, T. and Farooqui, A. A., Academic Press, Elsevier, London, U. K.
-
Boutin, S., Alburaki, M., Mercier, P. L., Giovenazzo, P. and Derome, N. (2015). Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives. BMC Genomics, 16(1): 500.
-
Bozdeveci, A., Akpınar, R. K., Karaoğlu, Ş. A. (2024). Determination of the prevalence of honey bee diseases and parasites in samples from Sivas Province. Journal of Tekirdag Agricultural Faculty, 21(5): 1148-1160.
-
Braza, M. K. E., Gazmen, J. D. N., Yu, E. T. and Nellas, R. B. (2019). Ligand-induced conformational dynamics of a tyramine receptor from Sitophilus oryzae. Scientific Reports, 9(1): 1-14.
-
Brigaud, I., Grosmaître, X., François, M. C. and Jacquin-Joly, E. (2009). Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell and Tissue Research, 335(2): 455-463.
-
Büchler, R., Andonov, S., Bienefeld, K., Costa, C., Hatjina, F., Kezic, N., Kryger, P., Spivak, M., Uzunov, A. and Wilde, J. (2013). Standard methods for rearing and selection of Apis mellifera queens. Journal of Apicultural Research, 52(1): 1-30.
-
Dimić, D., Milanović, Ž., Jovanović, G., Sretenović, D., Milenković, D., Marković, Z. and Marković, J. D. (2020). Comparative antiradical activity and molecular Docking/Dynamics analysis of octopamine and norepinephrine: the role of OH groups. Computational Biology and Chemistry, 84: 107170.
-
Duportets, L., Barrozo, R. B., Bozzolan, F., Gaertner, C., Anton, S., Gadenne, C. and Debernard, S. (2010). Cloning of an octopamine/tyramine receptor and plasticity of its expression as a function of adult sexual maturation in the male moth Agrotis ipsilon. Insect Molecular Biology, 19(4): 489-499.
-
Enan, E. E. (2005). Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochemistry and Molecular Biology, 35(4): 309-321.
-
Farooqui, T. (2007). Octopamine-mediated neuromodulation of insect senses. Neurochemical Research, 32(9):1511-1529.
-
Farooqui, T. and Farooqui, A. A. (2010). Biogenic Amines: Pharmacological, Neurochemical and Molecular Aspects in The CNS. Nova Science Publishers, Inc., Hauppauge, NY, U.S.A.
-
Finetti, L., Roeder, T., Calò, G. and Bernacchia, G. (2021). The insect type 1 tyramine receptors: from structure to behavior. Insects, 12(4): 315.
-
Gainetdinov, R. R., Hoener, M. C., and Berry, M. D. (2018). Trace amines and their receptors. Pharmacological Reviews, 70(3): 549-620.
-
Goode, K., Huber, Z., Mesce, K. A. and Spivak, M. (2006). Hygienic behavior of the honey bee (Apis mellifera) is independent of sucrose responsiveness and foraging ontogeny. Hormones and Behavior, 49(3): 391-397.
-
Göze, İ. and Özdil, F. (2023). Genetic Diversity of Kırklareli Honey Bee (Apis mellifera L.) populations in Thrace region of Turkey: Identification of mitochondrial COI and ND5 gene regions. Journal of Tekirdag Agricultural Faculty, 20(4): 959-966.
-
Gramacho, K. P. and Spivak, M. (2003). Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior. Behavioral Ecology and Sociobiology, 54(5): 472-479.
-
Guo, X., Wang, Y., Sinakevitch, I., Lei, H., and Smith, B. H. (2018). Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. Journal of Insect Physiology, 111: 47-52.
-
Guzman, L. D., Rinderer, T. E., Stelzer, J. A., Beaman, L., Delatte, G. T. and Harper, C. (2002). Hygienic behavior of honey bees from far-eastern Russia. American Bee Journal, 142(1): 58-60.
-
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symposium Series, 41: 95-98
-
Harpur, B. A., Guarna, M. M., Huxter, E., Higo, H., Moon, K. M., Hoover, S. E., Ibrahim, A., Melathopoulos, A. P., Desai, S., Currie, R. W., Pernal, S. F., Foster, L. J. and Zayed, A. (2019). Integrative genomics reveals the genetics and evolution of the honey bee’s social immune system. Genome Biology and Evolution, 11(3): 937-948.
-
Invernizzi, C., Rivas, F. and Bettucci, L. (2011). Resistance to chalkbrood disease in Apis mellifera L. (Hymenoptera: Apidae) colonies with different hygienic behavior. Neotropical Entomology, 40: 28-34.
-
Ishida, Y., and Ozaki, M. (2011). A putative octopamine/tyramine receptor mediating appetite in a hungry fly. Naturwissenschaften, 98(7): 635-638.
-
Ji, P., Xu, F., Huang, B., Li, Y., Li, L. and Zhang, G. (2016). Molecular characterization and functional analysis of a putative octopamine/tyramine receptor during the developmental stages of the pacific oyster. Crassostrea gigas, Plos One, 11(12): e0168574.
-
Ji, T., Yin, L., Liu, Z., Shen, F. and Shen, J. (2014). High-throughput sequencing identification of genes involved with Varroa destructor resistance in the eastern honeybee, Apis cerana. Genetics and Molecular Research, 13: 9086-9096.
-
Kalendar, R., Lee, D. and Schulman, A. H. (2009). FastPCR Software for PCR primer and probe design and repeat search. Genes. Genomes and Genomics, 3(1): 1-14.
-
Kastner, K. W., Shoue, D. A., Estiu, G. L., Wolford, J., Fuerst, M. F., Markley, L. D., Izaguirre, J. A. and McDowell, M. A. (2014). Characterization of the Anopheles gambiae octopamine receptor and discovery of potential agonists and antagonists using a combined computational-experimental approach. Malaria Journal, 13(1): 1-14.
-
Kekeçoğlu, M., Rasgele, P. G., Burğut, A. and Kambur, M. (2015). Development and determination of Yıgılca honey bee (Apis mellifera L.) with respect to hygienic behavior. Uludag Bee Journal, 15(2): 47-59. (In Turkish)
-
Kim, J. S., Kim, M. J., Kim, H. K., Vung, N. N. and Kim, I. (2019). Development of single nucleotide polymorphism markers specific to Apis mellifera (Hymenoptera: Apidae) line displaying high hygienic behavior against Varroa destructor, an ectoparasitic mite. Journal of Asia-Pacific Entomology, 22(4): 1031-1039.
-
Laidlaw, H. H. (1979). Contemporary Queen Rearing, Hamilton, İllinois: Dadant and Sons Publications, USA.
Lange, A. B. (2009). Tyramine: from octopamine precursor to neuroactive chemical in insects. General and Comparative Endocrinology, 162(1): 18-26.
-
Lazarov, S. B., Veleva, P. and Zhelyazkova, I. (2020). Statistical models for assessing the influence of hygienic behaviour of worker bees on the level of lysozyme and total protein content in their hаemolymph. Iranian Journal of Applied Animal Science, 10(2): 365-373.
-
Lee, S., Lim, S., Choi, Y. S., Lee, M. L. and Kwon, H. W. (2020). Volatile disease markers of American foulbrood-infected larvae in Apis mellifera. Journal of Insect Physiology, 122: 104040.
Li, H. M., Jiang, H. B., Gui, S. H., Liu, X. Q., Liu, H., Lu, X. P., Smagghe, G. and Wang, J. J. (2016). Characterization of a β-adrenergic-like octopamine receptor in the oriental fruit fly, Bactrocera dorsalis (Hendel). International Journal of Molecular Sciences, 17(10): 1577.
-
Masterman, R., Smith, B. H. and Spivak, M. (2000). Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L.) using proboscis extension reflex conditioning. Journal of Insect Behavior, 13(1): 87-101.
-
McAfee, A., Chapman, A., Iovinella, I., Gallagher-Kurtzke, Y., Collins, T. F., Higo, H., Madilao, L.L., Pelosi, P. and Foster, L. J. (2018). A death pheromone, oleic acid, triggers hygienic behavior in honey bees (Apis mellifera L.). Scientific Reports, 8(1): 1-13.
-
McAfee, A., Collins, T. F., Madilao, L. L. and Foster, L. J. (2017). Odorant cues linked to social immunity induce lateralized antenna stimulation in honey bees (Apis mellifera L.). Scientific Reports, 7(1): 1-12.
-
Molaei, G., Paluzzi, J. P., Bendena, W. G. and Lange, A. B. (2005). Isolation, cloning, and tissue expression of a putative octopamine/tyramine receptor from locust visceral muscle tissues. Archives of Insect Biochemistry and Physiology, 59(3): 132-149.
-
Morfin, N., Goodwin, P. H., Correa-Benitez, A. and Guzman-Novoa, E. (2019). Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviors of honey bees. Apidologie, 50(5): 595-605.
-
Mustard, J. A., Kurshan, P. T., Hamilton, I. S., Blenau, W., and Mercer, A. R. (2005). Developmental expression of a tyramine receptor gene in the brain of the honey bee, Apis mellifera. Journal of Comparative Neurology, 483(1): 66-75.
-
Nicodemo, D., De Jong, D., Couto, R. H. N. and Malheiros, B. (2013). Honey bee lines selected for high propolis production also have superior hygienic behavior and increased honey and pollen stores. Genetics and Molecular Research, 12(4): 6931-6938.
-
Oskay, D., Kence, A., Kence, M., Doğaroğlu, M. and Tunca, R. İ. (2014). Project on development and breeding of colonies against varroa in Mugla honey bee (Apis mellifera anatoliaca). TAGEM (TAGEM/ 15 / AR-GE /19, 2015-2018) Project Report. (In Turkish)
-
Palacio, M. A., Figini, E. E., Ruffinengo, S. R., Rodriguez, E. M., Hoyo, M. L. and Bedascarrasbure, E. L. (2000). Changes in a population of Apis mellifera L. selected for hygienic behavior and its relation to brood disease tolerance. Apidologie, 31: 471-478.
-
Peng, T., Derstroff, D., Maus, L., Bauer, T. and Grüter, C. (2021). Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. Genes, Brain and Behavior, 20(4): e12722.
-
Pflüger, H. J. and Stevenson, P. A. (2005). Evolutionary aspects of octopaminergic systems with emphasis on arthropods. Arthropod Structure & Development, 34(3): 379-396.
-
Pinto, F. A., Puker, A., Barreto, L.M.R.C. and Message, D. (2012). The ectoparasite mite Varroa destructor Anderson and Trueman in southeastern Brazil apiaries: effects of the hygienic behavior of Africanized honey bees on infestation rates. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(5): 1194-1199.
-
Rasolofoarivao, H., Delatte, H., Raveloson-Ravaomanarivo, L. H., Reynaud, B. and Clémencet, J. (2015). Assessing hygienic behavior of Apis mellifera unicolor (Hymenoptera: Apidae), the endemic honey bee from Madagascar. Genetics and Molecular Research, 14(2): 5879-5889.
-
Rothenbuhler, W. C. (1964). Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. American Zoologist, 4(2): 111-123.
-
Scannapieco, A. C., Mannino, M. C., Soto, G., Palacio, M. A., Cladera, J. L. and Lanzavecchia, S. B. (2017). Expression analysis of genes putatively associated with hygienic behavior in selected stocks of Apis mellifera L. from Argentina. Insectes Sociaux, 64(4): 485-494.
-
Scheiner, R., Baumann, A. and Blenau, W. (2006). Aminergic control and modulation of honeybee behaviour. Current Neuropharmacology, 4(4): 259-276.
-
Schendzielorz, T., Schirmer, K., Stolte, P. and Steng, M. (2015). Octopamine regulates antennal sensory neurons via daytime-dependent changes in cAMP and IP3 levels in the hawkmoth Manduca sexta. Plos One, 10(3): e0121230.
-
Sinakevitch, I., Mustard, J. A. and Smith, B. H. (2011). Distribution of the octopamine receptor AmOA1 in the honey bee brain. Plos One, 6(1): e14536.
-
Spivak, M. (1996). Honey bee hygienic behavior and defense against Varroa jacobsoni. Apidologie, 27(4): 245-260.
-
Spivak, M. and Danka, R. G. (2021). Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie, 52(1): 1-16.
-
Spivak, M. and Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6): 555-565.
-
Spivak, M., Masterman, R., Ross, R. and Mesce, K. A. (2003). Hygienic behavior in the honeybee (Apis mellifera L.) and the modulatory role of octopamine. Journal of Neurobiology, 55(3): 341-354.
-
Spötter, A., Gupta, P., Mayer, M., Reinsch, N. and Bienefeld, K. (2016). Genome-wide association study of a Varroa-specific defense behavior in honeybees (Apis mellifera). Journal of Heredity, 107(3): 220-227.
-
Swanson, J. A., Torto, B., Kells, S. A., Mesce, K. A., Tumlinson, J. H., Spivak, M. (2009). Odorants that induce hygienic behavior in honeybees: identification of volatile compounds in chalkbrood-infected honeybee larvae. Journal of Chemical Ecology. 35: 1108-1116.
-
Thamm, M., Scholl, C., Reim, T., Grübel, K., Möller, K., Rössler, W. and Scheiner, R. (2017). Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain. Journal of Comparative Neurology, 525(12): 2615-2631.
-
Thamm, M., Wagler, K., Brockmann, A., and Scheiner, R. (2021). Tyramine 1 receptor distribution in the brain of corbiculate bees points to a conserved function, Brain. Behavior and Evolution, 96(1): 13-25.
-
Wagoner, K. M., Millar, J. G., Schal, C. and Rueppell, O. (2020). Cuticular pheromones stimulate hygienic behavior in the honey bee (Apis mellifera). Scientific Reports, 10(1): 1-11.
-
Wallberg, A., Schoenıng, C., Webster, M. T. and Hasselmann, M. (2017). Two extended haplotype blocks are associated with adaptation to high altitude habitats in East African honeybees. Plos Genetics, 13(5): e1006792.
-
Wang, Y., Amdam, G. V., Daniels, B. C., and Page Jr, R. E. (2020). Tyramine and its receptor TYR1 linked behavior QTL to reproductive physiology in honey bee workers (Apis mellifera). Journal of Insect Physiology, 126: 104093.
-
Wielewski, P., de Toledo, V.d.A.A., Martins, A.N., Costa-Maia, F.M., Faquinello, P., Lino-Lourenço, D.A., Ruvolo-Takasusuki, M. C. C., Toledo, V. A. and Lopes, D. A. (2012). Relationship between hygienic behavior and Varroa destructor mites in colonies producing honey or royal jelly. Sociobiology, 59(1): 251-274.
-
Xu, G., Chang, X. F., Gu, G. X., Jia, W. X., Guo, L., Huang, J. and Ye, G. Y. (2020). Molecular and pharmacological characterization of a β-adrenergic-like octopamine receptor from the green rice leafhopper Nephotettix cincticeps. Insect Biochemistry and Molecular Biology, 120: 103337.
-
Zhukovskaya, M. I., and Polyanovsky, A. D. (2017). Biogenic amines in insect antennae. Frontiers in Systems Neuroscience, 11(45): 1-9.