Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 9 Sayı: 4, 1295 - 1308, 30.11.2022
https://doi.org/10.18596/jotcsa.1127200

Öz

Kaynakça

  • 1. Chakraborty S, L. MN. Review{\textemdash}An Overview on Supercapacitors and Its Applications. J Electrochem Soc [Internet]. 2022;169(2):20552.
  • 2. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des. 2019;186:108199.
  • 3. Yazar S, Arvas MB, Sahin Y. An ultrahigh-energy density and wide potential window aqueous electrolyte supercapacitor built by polypyrrole/aniline 2-sulfonic acid modified carbon felt electrode. Int J Energy Res [Internet].
  • 4. Uke SJ, Mardikar SP, Kumar A, Kumar Y, Gupta M, Kumar Y. A review of π-conjugated polymer-based nanocomposites for metal-ion batteries and supercapacitors. R Soc Open Sci. 2021;8(10).
  • 5. Arvas MB, Gencten M, Sahin Y. One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics (Kiel). 2021 May;27(5):2241–56.
  • 6. Arvas MB, Yazar S, Sahin Y. Electrochemical synthesis and characterization of self-doped aniline 2-sulfonic acid-modified flexible electrode with high areal capacitance and rate capability for supercapacitors. Synth Met [Internet]. 2022;285:117017.
  • 7. Liao G, Gong Y, Yi C, Xu Z. Soluble, Antibaterial, and Anticorrosion Studies of Sulfonated Polystyrene/Polyaniline/Silver Nanocomposites Prepared with the Sulfonated Polystyrene Template. Chinese J Chem [Internet]. 2017;35(7):1157–64.
  • 8. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films-A Review. Polymers (Basel) [Internet]. 2021 Jun 18;13(12):2003.
  • 9. Thakur AK, Choudhary RB, Majumder M, Majhi M. Fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications. Ionics (Kiel) [Internet]. 2018;24(1):257–68.
  • 10. Thakur AK, Deshmukh AB, Choudhary RB, Karbhal I, Majumder M, Shelke M V. Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater Sci Eng B [Internet]. 2017;223:24–34.
  • 11. Dawouda HD, Altahtamounia TM, Zaghoa MM, Bensalahb N. A brief overview of flexible CNT/PANI super capacitors. Mater Sci Nanotechnol. 2017;01(02).
  • 12. Li J, Qiu S, Liu B, Chen H, Xiao D, Li H. Strong interaction between polyaniline and carbon fibers for flexible supercapacitor electrode materials. J Power Sources [Internet]. 2021;483(August 2020):229219.
  • 13. Lü QF, Chen G, Lin TT, Yu Y. Dye-functionalized graphene/polyaniline nanocomposite as an electrode for efficient electrochemical supercapacitor. Compos Sci Technol [Internet]. 2015;115:80–6.
  • 14. Wang Q, Song H, Li W, Wang S, Liu L, Li T, et al. Facile synthesis of polypyrrole/graphene composite aerogel with Alizarin Red S as reactive dopant for high-performance flexible supercapacitor. J Power Sources [Internet]. 2022;517:230737.
  • 15. Xueying Y, Jijue L, Xinkun S, Yingzhao H, Xiaoxiao D, Yongjin Z, et al. Facile Synthesis of Polyaniline-Prussian Blue Composite for High-Performance Supercapacitors. Int J Nanoparticles Nanotechnol. 2017;3(1).
  • 16. Arvas MB, Gürsu H, Gencten M, Sahin Y. Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J Energy Storage [Internet]. 2021 Mar;35:102328.
  • 17. Wang Q, Feng Y, Feng J, Li D. Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. J Solid State Chem [Internet]. 2011;184(6):1551–5.
  • 18. Jin L, Jiang Y, Zhang M, Li H, Xiao L, Li M, et al. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials. Sci Rep [Internet]. 2018;8(1):6268.
  • 19. Yasuda A, Shimidzu T. Chemical Oxidative Polymerization of Aniline with Ferric Chloride. 1993;25(4):329–38.
  • 20. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, et al. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep [Internet]. 2017;7(1):44562.
  • 21. Pandey K, Yadav P, Mukhopadhyay I. Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Phys Chem Chem Phys. 2015;17(2):878–87.
  • 22. Lim SP, Huang NM, Lim HN. Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram Int [Internet]. 2013;39(6):6647–55.
  • 23. Sajjad M, Chen X, Yu C, Guan L, Zhang S, Ren Y, et al. High Energy Density Asymmetric Supercapacitor Based on NiCo2S4/CNTs Hybrid and Carbon Nanotube Paper Electrodes. J Mol Eng Mater [Internet]. 2019;07(01n02):1950004.
  • 24. Qiu G, Zhu A, Zhang C. Hierarchically structured carbon nanotube-polyaniline nanobrushes for corrosion protection over a wide pH range. RSC Adv. 2017;7(56):35330–9.
  • 25. John A, Mahadeva SK, Kim J. The preparation, characterization and actuation behavior of polyaniline and cellulose blended electro-active paper. Smart Mater Struct. 2010;19(4).
  • 26. Padmapriya S, Harinipriya S, Jaidev K, Sudha V, Kumar D, Pal S. Storage and evolution of hydrogen in acidic medium by polyaniline. Int J Energy Res. 2018;42(3):1196–209.
  • 27. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, et al. Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes–Manganese Dioxide Ternary Composite for Potential Application in Supercapattery. Polymers (Basel) [Internet]. 2020;12(12).
  • 28. Mitra M, Kulsi C, Chatterjee K, Kargupta K, Ganguly S, Banerjee D, et al. Reduced graphene oxide-polyaniline composites—synthesis{,} characterization and optimization for thermoelectric applications. RSC Adv [Internet]. 2015;5(39):31039–48.
  • 29. Tang L, Duan F, Chen M. Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications. J Solid State Electrochem. 2016;20.
  • 30. Rajagopalan B, Hur SH, Chung JS. Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Res Lett [Internet]. 2015;10(1):1–9.
  • 31. Ali LIA, Ismail HK, Alesary HF, Aboul-Enein HY. A nanocomposite based on polyaniline, nickel and manganese oxides for dye removal from aqueous solutions. Int J Environ Sci Technol [Internet]. 2021;18(7):2031–50.
  • 32. Ahmad S, Sultan A, Raza W, Muneer M, Mohammad F. Boron nitride based polyaniline nanocomposite: Preparation, property, and application. J Appl Polym Sci. 2016;133(39).
  • 33. Bhat MA, Rather RA, Shalla AH. PEDOT and PEDOT:PSS conducting polymeric hydrogels: A report on their emerging applications. Synth Met [Internet]. 2021;273(January):116709.
  • 34. Hilário RB, de Moraes TH, da Rocha Pimentel Gonçalves JM, Gandara M, Gonçalves ES. Influence of heat treatment and electrochemical treatment on the properties of PANI electrodeposited on carbon fiber felt. Diam Relat Mater [Internet]. 2022;123:108867.
  • 35. Ibrahim NI, Wasfi AS. Electrochemical evaluation of polyaniline/multi-walled carbon nanotube composite synthesized by microwave plasma polymerization as a supercapacitor electrode. IOP Conf Ser Mater Sci Eng. 2020;757(1).
  • 36. Yazar S, Atun G. Electrochemical synthesis of tunable polypyrrole-based composites on carbon fabric for wide potential window aqueous supercapacitor. Int J Energy Res [Internet].
  • 37. Rincón RA, Artyushkova K, Mojica M, Germain MN, Minteer SD, Atanassov P. Structure and Electrochemical Properties of Electrocatalysts for NADH Oxidation. Electroanalysis [Internet]. 2010;22(7–8):799–806.
  • 38. Jarjes ZA, Samian MR, Ab Ghani S. Conductive polymers: Their preparations and catalyses on NADH oxidation at carbon cloth electrodes. Arab J Chem [Internet]. 2015;8(5):726–31.
  • 39. Song E, Choi J-W. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomaterials. 2013;3:498–523.
  • 40. Li Y, Patrick BO, Dolphin D. Near-Infrared Absorbing Azo Dyes: Synthesis and X-ray Crystallographic and Spectral Characterization of Monoazopyrroles, Bisazopyrroles, and a Boron−Azopyrrole Complex. J Org Chem [Internet]. 2009 Aug 7;74(15):5237–43.
  • 41. Ates M, Serin MA, Calisskan S. Electrochemical supercapacitors of PANI/MWCNT, PEDOT/MWCNT and P(ANI-co-EDOT)/MWCNT nanocomposites. Polym Bull [Internet]. 2019 Jun 27;76(6):3207–31.
  • 42. Pal R, Goyal SL, Rawal I. High-performance solid state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes. J Polym Res [Internet]. 2020;27(7):179.
  • 43. Dong B, He B-L, Xu C-L, Li H-L. Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B [Internet]. 2007;143(1):7–13.
  • 44. Che B, Li H, Zhou D, Zhang Y, Zeng Z, Zhao C, et al. Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Compos Part B Eng [Internet]. 2019;165:671–8.
  • 45. M. J, M. M, Jayalekshmi S, Jayaraj MK. PANI/MWCNT composite electrode for supercapacitor applications. In: Kobayashi NP, Talin AA, Islam MS, Davydov A V, editors. Low-Dimensional Materials and Devices 2018 [Internet]. SPIE; 2018. p. 33–8.
  • 46. Shumakovich GP, Morozova O V, Khlupova ME, Vasil’eva IS, Zaitseva EA, Yaropolov AI. Enhanced performance of a flexible supercapacitor due to a combination of the pseudocapacitances of both a PANI/MWCNT composite electrode and a gel polymer redox electrolyte. RSC Adv [Internet]. 2017;7(54):34192–6.
  • 47. Chen W, Tao X, Li Y, Wang H, Wei D, Ban C. Hydrothermal synthesis of graphene-MnO2-polyaniline composite and its electrochemical performance. J Mater Sci Mater Electron. 2016;27(7):6816–22.
  • 48. Hong X, Wang X, Li Y, Deng C, Liang B. Potassium citrate-derived carbon nanosheets/carbon nanotubes/polyaniline ternary composite for supercapacitor electrodes. Electrochim Acta [Internet]. 2022;403:139571.
  • 49. Cheng B, Cheng R, Tan F, Liu X, Huo J, Yue G. Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based on MoS2/MWCNT and PANI/MWCNT Composite Electrodes. Nanoscale Res Lett [Internet]. 2019;14(1):66.
  • 50. Banerjee J, Dutta K, Kader MA, Nayak SK. An overview on the recent developments in polyaniline-based supercapacitors. Polym Adv Technol [Internet]. 2019;30(8):1902–21.
  • 51. Malik R, Zhang L, McConnell C, Schott M, Hsieh Y-Y, Noga R, et al. Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon N Y [Internet]. 2017;116:579–90.
  • 52. Liu Q, Nayfeh MH, Yau S-T. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J Power Sources [Internet]. 2010;195(21):7480–3.

Fabrication of Textile-Based Flexible Supercapacitor with a Textile Dye on Polyaniline-Based Composite Electrode for Enhanced Energy Storage

Yıl 2022, Cilt: 9 Sayı: 4, 1295 - 1308, 30.11.2022
https://doi.org/10.18596/jotcsa.1127200

Öz

Polyaniline (PANI) is a promising conductive polymer for use in energy storage applications. Here, a one-step hydrothermal method of PANI polymerization on carbon felt electrode was synthesized using an azo dye, a bisulfonated dichloro anionic dye molecule to enhance an efficient textile-based flexible supercapacitor electrode material for energy storage applications. The electrode material synthesized at concentration of 2 mM AY17 exhibits 814.1 F g-1 at the scan rate of 5 mV s-1 with multiwall carbon nanotubes (MWCNTs). Due to electrostatic interaction with the polymer, the presence of high electronegativity Cl atoms in the dye molecule significantly improves the PANI structure's electron donor/acceptor properties. A symmetric supercapacitor exhibits an energy density of 11.7 W h kg−1 at a power density of 300 W kg−1, and it is 4.5 W h kg−1 at 1800 W kg−1 in 3.0 M KCl aqueous electrolyte. The capacitance retention performance value of the symmetric supercapacitor exhibited 81.76% after 2500 cycles.

Kaynakça

  • 1. Chakraborty S, L. MN. Review{\textemdash}An Overview on Supercapacitors and Its Applications. J Electrochem Soc [Internet]. 2022;169(2):20552.
  • 2. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des. 2019;186:108199.
  • 3. Yazar S, Arvas MB, Sahin Y. An ultrahigh-energy density and wide potential window aqueous electrolyte supercapacitor built by polypyrrole/aniline 2-sulfonic acid modified carbon felt electrode. Int J Energy Res [Internet].
  • 4. Uke SJ, Mardikar SP, Kumar A, Kumar Y, Gupta M, Kumar Y. A review of π-conjugated polymer-based nanocomposites for metal-ion batteries and supercapacitors. R Soc Open Sci. 2021;8(10).
  • 5. Arvas MB, Gencten M, Sahin Y. One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics (Kiel). 2021 May;27(5):2241–56.
  • 6. Arvas MB, Yazar S, Sahin Y. Electrochemical synthesis and characterization of self-doped aniline 2-sulfonic acid-modified flexible electrode with high areal capacitance and rate capability for supercapacitors. Synth Met [Internet]. 2022;285:117017.
  • 7. Liao G, Gong Y, Yi C, Xu Z. Soluble, Antibaterial, and Anticorrosion Studies of Sulfonated Polystyrene/Polyaniline/Silver Nanocomposites Prepared with the Sulfonated Polystyrene Template. Chinese J Chem [Internet]. 2017;35(7):1157–64.
  • 8. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films-A Review. Polymers (Basel) [Internet]. 2021 Jun 18;13(12):2003.
  • 9. Thakur AK, Choudhary RB, Majumder M, Majhi M. Fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications. Ionics (Kiel) [Internet]. 2018;24(1):257–68.
  • 10. Thakur AK, Deshmukh AB, Choudhary RB, Karbhal I, Majumder M, Shelke M V. Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater Sci Eng B [Internet]. 2017;223:24–34.
  • 11. Dawouda HD, Altahtamounia TM, Zaghoa MM, Bensalahb N. A brief overview of flexible CNT/PANI super capacitors. Mater Sci Nanotechnol. 2017;01(02).
  • 12. Li J, Qiu S, Liu B, Chen H, Xiao D, Li H. Strong interaction between polyaniline and carbon fibers for flexible supercapacitor electrode materials. J Power Sources [Internet]. 2021;483(August 2020):229219.
  • 13. Lü QF, Chen G, Lin TT, Yu Y. Dye-functionalized graphene/polyaniline nanocomposite as an electrode for efficient electrochemical supercapacitor. Compos Sci Technol [Internet]. 2015;115:80–6.
  • 14. Wang Q, Song H, Li W, Wang S, Liu L, Li T, et al. Facile synthesis of polypyrrole/graphene composite aerogel with Alizarin Red S as reactive dopant for high-performance flexible supercapacitor. J Power Sources [Internet]. 2022;517:230737.
  • 15. Xueying Y, Jijue L, Xinkun S, Yingzhao H, Xiaoxiao D, Yongjin Z, et al. Facile Synthesis of Polyaniline-Prussian Blue Composite for High-Performance Supercapacitors. Int J Nanoparticles Nanotechnol. 2017;3(1).
  • 16. Arvas MB, Gürsu H, Gencten M, Sahin Y. Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J Energy Storage [Internet]. 2021 Mar;35:102328.
  • 17. Wang Q, Feng Y, Feng J, Li D. Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. J Solid State Chem [Internet]. 2011;184(6):1551–5.
  • 18. Jin L, Jiang Y, Zhang M, Li H, Xiao L, Li M, et al. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials. Sci Rep [Internet]. 2018;8(1):6268.
  • 19. Yasuda A, Shimidzu T. Chemical Oxidative Polymerization of Aniline with Ferric Chloride. 1993;25(4):329–38.
  • 20. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, et al. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci Rep [Internet]. 2017;7(1):44562.
  • 21. Pandey K, Yadav P, Mukhopadhyay I. Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Phys Chem Chem Phys. 2015;17(2):878–87.
  • 22. Lim SP, Huang NM, Lim HN. Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram Int [Internet]. 2013;39(6):6647–55.
  • 23. Sajjad M, Chen X, Yu C, Guan L, Zhang S, Ren Y, et al. High Energy Density Asymmetric Supercapacitor Based on NiCo2S4/CNTs Hybrid and Carbon Nanotube Paper Electrodes. J Mol Eng Mater [Internet]. 2019;07(01n02):1950004.
  • 24. Qiu G, Zhu A, Zhang C. Hierarchically structured carbon nanotube-polyaniline nanobrushes for corrosion protection over a wide pH range. RSC Adv. 2017;7(56):35330–9.
  • 25. John A, Mahadeva SK, Kim J. The preparation, characterization and actuation behavior of polyaniline and cellulose blended electro-active paper. Smart Mater Struct. 2010;19(4).
  • 26. Padmapriya S, Harinipriya S, Jaidev K, Sudha V, Kumar D, Pal S. Storage and evolution of hydrogen in acidic medium by polyaniline. Int J Energy Res. 2018;42(3):1196–209.
  • 27. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, et al. Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes–Manganese Dioxide Ternary Composite for Potential Application in Supercapattery. Polymers (Basel) [Internet]. 2020;12(12).
  • 28. Mitra M, Kulsi C, Chatterjee K, Kargupta K, Ganguly S, Banerjee D, et al. Reduced graphene oxide-polyaniline composites—synthesis{,} characterization and optimization for thermoelectric applications. RSC Adv [Internet]. 2015;5(39):31039–48.
  • 29. Tang L, Duan F, Chen M. Fabrication of ferric chloride doped polyaniline/multilayer super-short carbon nanotube nanocomposites for supercapacitor applications. J Solid State Electrochem. 2016;20.
  • 30. Rajagopalan B, Hur SH, Chung JS. Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Res Lett [Internet]. 2015;10(1):1–9.
  • 31. Ali LIA, Ismail HK, Alesary HF, Aboul-Enein HY. A nanocomposite based on polyaniline, nickel and manganese oxides for dye removal from aqueous solutions. Int J Environ Sci Technol [Internet]. 2021;18(7):2031–50.
  • 32. Ahmad S, Sultan A, Raza W, Muneer M, Mohammad F. Boron nitride based polyaniline nanocomposite: Preparation, property, and application. J Appl Polym Sci. 2016;133(39).
  • 33. Bhat MA, Rather RA, Shalla AH. PEDOT and PEDOT:PSS conducting polymeric hydrogels: A report on their emerging applications. Synth Met [Internet]. 2021;273(January):116709.
  • 34. Hilário RB, de Moraes TH, da Rocha Pimentel Gonçalves JM, Gandara M, Gonçalves ES. Influence of heat treatment and electrochemical treatment on the properties of PANI electrodeposited on carbon fiber felt. Diam Relat Mater [Internet]. 2022;123:108867.
  • 35. Ibrahim NI, Wasfi AS. Electrochemical evaluation of polyaniline/multi-walled carbon nanotube composite synthesized by microwave plasma polymerization as a supercapacitor electrode. IOP Conf Ser Mater Sci Eng. 2020;757(1).
  • 36. Yazar S, Atun G. Electrochemical synthesis of tunable polypyrrole-based composites on carbon fabric for wide potential window aqueous supercapacitor. Int J Energy Res [Internet].
  • 37. Rincón RA, Artyushkova K, Mojica M, Germain MN, Minteer SD, Atanassov P. Structure and Electrochemical Properties of Electrocatalysts for NADH Oxidation. Electroanalysis [Internet]. 2010;22(7–8):799–806.
  • 38. Jarjes ZA, Samian MR, Ab Ghani S. Conductive polymers: Their preparations and catalyses on NADH oxidation at carbon cloth electrodes. Arab J Chem [Internet]. 2015;8(5):726–31.
  • 39. Song E, Choi J-W. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomaterials. 2013;3:498–523.
  • 40. Li Y, Patrick BO, Dolphin D. Near-Infrared Absorbing Azo Dyes: Synthesis and X-ray Crystallographic and Spectral Characterization of Monoazopyrroles, Bisazopyrroles, and a Boron−Azopyrrole Complex. J Org Chem [Internet]. 2009 Aug 7;74(15):5237–43.
  • 41. Ates M, Serin MA, Calisskan S. Electrochemical supercapacitors of PANI/MWCNT, PEDOT/MWCNT and P(ANI-co-EDOT)/MWCNT nanocomposites. Polym Bull [Internet]. 2019 Jun 27;76(6):3207–31.
  • 42. Pal R, Goyal SL, Rawal I. High-performance solid state supercapacitors based on intrinsically conducting polyaniline/MWCNTs composite electrodes. J Polym Res [Internet]. 2020;27(7):179.
  • 43. Dong B, He B-L, Xu C-L, Li H-L. Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Mater Sci Eng B [Internet]. 2007;143(1):7–13.
  • 44. Che B, Li H, Zhou D, Zhang Y, Zeng Z, Zhao C, et al. Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Compos Part B Eng [Internet]. 2019;165:671–8.
  • 45. M. J, M. M, Jayalekshmi S, Jayaraj MK. PANI/MWCNT composite electrode for supercapacitor applications. In: Kobayashi NP, Talin AA, Islam MS, Davydov A V, editors. Low-Dimensional Materials and Devices 2018 [Internet]. SPIE; 2018. p. 33–8.
  • 46. Shumakovich GP, Morozova O V, Khlupova ME, Vasil’eva IS, Zaitseva EA, Yaropolov AI. Enhanced performance of a flexible supercapacitor due to a combination of the pseudocapacitances of both a PANI/MWCNT composite electrode and a gel polymer redox electrolyte. RSC Adv [Internet]. 2017;7(54):34192–6.
  • 47. Chen W, Tao X, Li Y, Wang H, Wei D, Ban C. Hydrothermal synthesis of graphene-MnO2-polyaniline composite and its electrochemical performance. J Mater Sci Mater Electron. 2016;27(7):6816–22.
  • 48. Hong X, Wang X, Li Y, Deng C, Liang B. Potassium citrate-derived carbon nanosheets/carbon nanotubes/polyaniline ternary composite for supercapacitor electrodes. Electrochim Acta [Internet]. 2022;403:139571.
  • 49. Cheng B, Cheng R, Tan F, Liu X, Huo J, Yue G. Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based on MoS2/MWCNT and PANI/MWCNT Composite Electrodes. Nanoscale Res Lett [Internet]. 2019;14(1):66.
  • 50. Banerjee J, Dutta K, Kader MA, Nayak SK. An overview on the recent developments in polyaniline-based supercapacitors. Polym Adv Technol [Internet]. 2019;30(8):1902–21.
  • 51. Malik R, Zhang L, McConnell C, Schott M, Hsieh Y-Y, Noga R, et al. Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon N Y [Internet]. 2017;116:579–90.
  • 52. Liu Q, Nayfeh MH, Yau S-T. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J Power Sources [Internet]. 2010;195(21):7480–3.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya, Elektrokimya, Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Sibel Yazar Aydoğan 0000-0002-6904-2693

Yayımlanma Tarihi 30 Kasım 2022
Gönderilme Tarihi 7 Haziran 2022
Kabul Tarihi 3 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 4

Kaynak Göster

Vancouver Yazar Aydoğan S. Fabrication of Textile-Based Flexible Supercapacitor with a Textile Dye on Polyaniline-Based Composite Electrode for Enhanced Energy Storage. JOTCSA. 2022;9(4):1295-308.