Derleme
BibTex RIS Kaynak Göster

Perspectives on Quantum Science and Technology of the Future

Yıl 2025, Cilt: 10 Sayı: 2, 121 - 138, 29.09.2025
https://doi.org/10.37995/jotcsc.1685989

Öz

Quantum science and technology are increasingly recognised as critical areas of research and development with profound implications for various scientific fields and practical applications. Quantum science explains experimental observations of subatomic phenomena, thereby enhancing our fundamental understanding of the entire system of concepts based on the principles of quantum theory. Quantum computing has the potential to bring about a radical transformation in computational methods. The development of fundamental tools such as quantum chemistry, quantum cryptography, and quantum machine learning, along with advanced applications like quantum biology, quantum finance, quantum sensing, weather forecasting, and quantum space science, is expected to exert a significant global impact. This review provides a broad overview of developments and highlights the importance of research with diverse possible applications in the field, offering solutions across sectors

Etik Beyan

Not Applicable

Proje Numarası

Not Applicable

Kaynakça

  • Aboy, M., Gasser, U., Cohen, I. G., & Kop, M. (2025). Quantum technology governance: A standards-first approach. Science, 389(6760), 575-578. https://doi.org/10.1126/science.adw0018
  • Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., & Wilhelm, F. K. (2018). The quantum technologies roadmap: A European community view. New Journal of Physics, 20(8), 080201. https://doi.org/10.1088/1367-2630/aad1ea
  • Aiello, C. D., Awschalom, D. D., Bernien, H., Brower, T., Brown, K. R., Brun, T. A., & Zwickl, B. M. (2021). Achieving a quantum smart workforce. Quantum Science and Technology, 6(3), 030501.https://doi.org/10.1088/2058-9565/abfa64
  • Baumeler, Ä., Costa, F., Ralph, T. C., Wolf, S., & Zych, M. (2019). Reversible time travel with freedom of choice. Classical and Quantum Gravity, 36(22), 224002. https://doi.org/10.1088/1361-6382/ab4973
  • Bongaarts, P. (2015). Quantum Theory. A Mathematical Approach.
  • Carroll, S. M. (2022). The quantum field theory on which the everyday world supervenes. In Levels of Reality in Science and Philosophy: Re-Examining the Multi-Level Structure of Reality, Cham: Springer International Publishing, 27-46. https://doi.org/10.1007/978-3-031-02607-5_2
  • Coccia, M. (2022). New directions in quantum technologies. J. Econ. Bib, 9(1), 21-39. https://doi.org/10.46476/jeconbib.v9i1.19
  • De Franceschi, S., Kouwenhoven, L., Schönenberger, C., & Wernsdorfer, W. (2010). Hybrid superconductor-quantum dot devices. Nature Nanotechnology, 5(10), 703-711. https://doi.org/ 10.1038/nnano.2010.173
  • Di Lauro, C. (2020). Rotational Structure in Molecular Infrared Spectra. Elsevier.
  • Foxley, J., Tofanelli, M., Knappenberger, J. A., Ackerson, C. J., & Knappenberger Jr, K. L. (2025). Diverse Superatomic Magnetic and Spin Properties of Au144 (SC8H9)60 Clusters. ACS Central Science. 11(8) 1329-1335. https://doi.org/10.1021/acscentsci.5c00139
  • García de Arquer, F. P., Talapin, D. V., Klimov, V. I., Arakawa, Y., Bayer, M., & Sargent, E. H. (2021). Semiconductor quantum dots: Technological progress and future challenges. Science, 373(6555), eaaz8541.https://doi.org/10.1126/science.aaz8541
  • Gerke, F., Müller, R., Bitzenbauer, P., Ubben, M., & Weber, K. A. (2022). Requirements for Future Quantum Workforce - A Delphi study. In Journal of Physics: Conference Series, IOP Publishing, 2297(1), 1-8. 012017. https://doi.org/10.1088/1742-6596/2297/1/012017
  • Grandy, D. A. (2010). Everyday Quantum Reality. Indiana University Press.
  • Greinert, F., Müller, R., Bitzenbauer, P., Ubben, M. S., & Weber, K. A. (2023). Future Quantum Workforce: Competences, requirements, and forecasts. Physical Review Physics Education Research, 19(1), 010137. https://doi.org/10.1103/PhysRevPhysEducRes.19.010137
  • Gutorov, I., Gorelova, I., Bellini, F., & D’Ascenzo, F. (2025). Quantum for all: Using social media to raise public awareness of quantum technologies. Information, 16(5), 375. https://doi.org/10.3390/info16050375.
  • Harrison, P., & Valavanis, A. (2016). Quantum wells, wires and dots: Theoretical and computational physics of semiconductor nanostructures. John Wiley & Sons. https://doi.org/10.1002/9781118923337
  • Holincheck, N., Rosenberg, J. L., Zhang, X., Butler, T. N., Colandene, M., & Dreyfus, B. W. (2024). Quantum science and technologies in K-12: Supporting teachers to integrate quantum in STEM classrooms. Education Sciences, 14(3), 219.
  • Hossain, K. A. (2023). The potential and challenges of quantum technology in the modern era. Scientific Research Journal, 11(6) 41-49. http://doi.org/10.31364/SCIRJ/v11.i6.2023.P0623953
  • Hughes, C., Finke, D., German, D. A., Merzbacher, C., Vora, P. M., & Lewandowski, H. J. (2022). Assessing the needs of the quantum industry. IEEE Transactions on Education, 65(4), 592-601. https://doi.org/10.1109/TE.2022.3153841
  • International Union of Pure and Applied Chemistry (2024 October). International Year of Quantum Science and Technology. https://iupac.org/the-international-year-of-quantum-science-and-technology-2025/
  • Kaur, M., & Venegas-Gomez, A. (2022). Defining the quantum workforce landscape: A review of global quantum education initiatives. Optical Engineering, 61(8), 081806. https://doi.org/10.1117/1.OE.61.8.081806
  • Kramers, H. A. (2018). Quantum Mechanics. Courier Dover Publications.
  • Le Bellac, M. (2011). Quantum Physics. Cambridge University Press, 513.
  • Levine, I. N., Busch, D. H., & Shull, H. (2009). Quantum Chemistry, Upper Saddle River, NJ: Pearson Prentice Hall, 6th Edition.
  • Luo, W., Cao, L., Shi, Y., Wan, L., Zhang, H., Li, S., & Liu, A. Q. (2023). Recent progress in quantum photonic chips for quantum communication and internet. Light: Science & Applications, 12(1), 175. https://doi.org/10.1038/s41377-023-01173-8
  • Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, V., Babbush, R., & Martinis, J. (2017). Commercialize quantum technologies in five years. Nature, 543(7644), 171-174. https://doi.org/ 10.1038/543171a
  • Möller, M., & Vuik, C. (2017). On the impact of quantum computing technology on future developments in high-performance scientific computing. Ethics and Information Technology, 19(4), 253-269. https://doi.org/10.1007/s10676-017-9438-0
  • Oi, D. K., Ling, A., Grieve, J. A., Jennewein, T., Dinkelaker, A. N., & Krutzik, M. (2017). Nanosatellites for quantum science and technology. Contemporary Physics, 58(1), 25-52. https://doi.org/10.1080/00107514-2016-1235150
  • Paras, Yadav, K., Kumar, P., Teja, D. R., Chakraborty, S., Chakraborty, M., & Hang, D. R. (2022). A review on low-dimensional nanomaterials: Nanofabrication, characterization, and applications. Nanomaterials, 13(1), 160. https://103390/nano13010160
  • Peacock, K. A. (2007). The quantum revolution: A historical perspective. Bloomsbury Publishing USA.
  • Peskin, M. E. (2018). An Introduction to Quantum Field Theory. CRC Press.
  • Phillips, R. (2025). Dismantling the Master's Clock: On Race, Space, and Time. AK Press.
  • Piela, L. (2013). Ideas of Quantum Chemistry. Elsevier.
  • Ross, M. B., Mirkin, C. A., & Schatz, G. C. (2016). Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures. The Journal of Physical Chemistry C, 120(2), 816-830.
  • Schleich, W. P., Ranade, K. S., Anton, C., Arndt, M., Aspelmeyer, M., Bayer, M., & Zoller, P. (2016). Quantum technology: From research to application. Applied Physics B, 122(5), 130. https://doi.org/10.1007/s00340-016-6353-8
  • Seskir, Z. C., Goorney, S. R., & Chiofalo, M. L. (2024). Educating to the "Culture" of quantum technologies: A survey study on concepts for public awareness. European Journal of STEM Education, 9(1), 3. https:/doi.org/10.20897/ejsteme/14193
  • Singh, S. K., El Azzaoui, A., & Salim, M. M. (2020). Quantum communication technology for Future ICT- Review. Journal of Information Processing Systems, 16(6). https://doi.org/ 10.3745/JIPS/03.0154
  • Smith, N. L., Herbert, P. J., Tofanelli, M. A., Knappenberger, J. A., Ackerson, C. J., & Knappenberger Jr, K. L. (2025).
  • The influence of passivating ligand identity on Au25 (SR) 18 spin-polarized emission. The Journal of Physical Chemistry Letters, 16(20), 5168-5172.https://doi.org/10.1021/acs.jpclett./5c00723
  • Thimmappa, B. H. S. (2023). Water-a wonder chemical in the World. African Journal of Chemical Education, 13(3), 202-249.
  • Van Dam, J. A., Nazarov, Y. V., Bakkers, E. P., De Franceschi, S., & Kouwenhoven, L. P. (2006). Supercurrent reversal in quantum dots. Nature, 442(7103), 667-670. https://doi.org/10.1038/nature05018
  • Vedral, V. (2011). Living in a quantum world. Scientific American, 304(6), 38-43. https://doi.org/10.1038/scientificamerican0611-38
  • Wang, Y., & Song, X. (2020). Quantum Science and Quantum Technology. Statistical Science, 35(1), 51-74. https://doi.org/10.1214/19-STS745
  • Wang, Yazhen, & Xinyu Song, (2020). Quantum science and quantum technology. Statistical Science, 35(1), 51-74. https://doi.org/10.1214/19-STS745
  • Yang, M., Chen, X., Wang, Z., Zhu, Y., Pan, S., Chen, K., & Zheng, J. (2021). Zero→ two-dimensional metal nanostructures: An overview on methods of preparation, characterization, properties, and applications. Nanomaterials, 11(8), 1895. https://doi.org/10.3390/nanomaterials11081895
  • Yao, C., & Ma, Y. (2021). Superconducting Materials: Challenges and Opportunities for Large-scale Applications. Iscience, 24(6). https://doi.org/ 10.1016/j.isci.2021.102541
  • Yardley, J. (2012). Introduction to Molecular Energy Transfer. Elsevier.
  • Yousef, K. M., D’Alessandro, M., Yeh, M., Sinclair, N., Loncar, M., & Capasso, F. (2025). Metasurface quantum graphs for generalized Hong-Ou-Mandel interference. Science, 389(6758), 416-422. https://doi.org/10.1126/science.adw8404

Kuantum Bilimi ve Teknolojisinin Geleceğine Yönelik Perspektifler

Yıl 2025, Cilt: 10 Sayı: 2, 121 - 138, 29.09.2025
https://doi.org/10.37995/jotcsc.1685989

Öz

Kuantum bilimi ve teknolojisi, çeşitli bilimsel alanlar ve pratik uygulamalar üzerinde derin etkileri olan kritik bir araştırma ve geliştirme alanı olarak giderek daha fazla önem kazanmaktadır. Kuantum bilimi, atom altı olgulara ilişkin deneysel gözlemleri açıklayarak kuantum teorisinin ilkelerine dayalı kavramsal sistemin tamamına dair temel anlayışımızı geliştirmektedir. Kuantum hesaplama, hesaplama yöntemlerinde köklü bir dönüşüm yaratma potansiyeline sahiptir. Kuantum kimyası, kuantum kriptografisi ve kuantum makine öğrenimi gibi temel araçların geliştirilmesi; kuantum biyolojisi, kuantum finansı, kuantum algılama, hava tahmini ve kuantum uzay bilimi gibi ileri uygulamalarla birlikte, önemli bir küresel etki yaratması beklenmektedir. Bu kısa derleme, alandaki gelişmelere geniş bir bakış sunmakta ve çeşitli olası uygulamalarla araştırmaların önemini vurgulayarak farklı sektörlerde çözümler üretme potansiyelini ortaya koymaktadır.

Proje Numarası

Not Applicable

Kaynakça

  • Aboy, M., Gasser, U., Cohen, I. G., & Kop, M. (2025). Quantum technology governance: A standards-first approach. Science, 389(6760), 575-578. https://doi.org/10.1126/science.adw0018
  • Acín, A., Bloch, I., Buhrman, H., Calarco, T., Eichler, C., Eisert, J., & Wilhelm, F. K. (2018). The quantum technologies roadmap: A European community view. New Journal of Physics, 20(8), 080201. https://doi.org/10.1088/1367-2630/aad1ea
  • Aiello, C. D., Awschalom, D. D., Bernien, H., Brower, T., Brown, K. R., Brun, T. A., & Zwickl, B. M. (2021). Achieving a quantum smart workforce. Quantum Science and Technology, 6(3), 030501.https://doi.org/10.1088/2058-9565/abfa64
  • Baumeler, Ä., Costa, F., Ralph, T. C., Wolf, S., & Zych, M. (2019). Reversible time travel with freedom of choice. Classical and Quantum Gravity, 36(22), 224002. https://doi.org/10.1088/1361-6382/ab4973
  • Bongaarts, P. (2015). Quantum Theory. A Mathematical Approach.
  • Carroll, S. M. (2022). The quantum field theory on which the everyday world supervenes. In Levels of Reality in Science and Philosophy: Re-Examining the Multi-Level Structure of Reality, Cham: Springer International Publishing, 27-46. https://doi.org/10.1007/978-3-031-02607-5_2
  • Coccia, M. (2022). New directions in quantum technologies. J. Econ. Bib, 9(1), 21-39. https://doi.org/10.46476/jeconbib.v9i1.19
  • De Franceschi, S., Kouwenhoven, L., Schönenberger, C., & Wernsdorfer, W. (2010). Hybrid superconductor-quantum dot devices. Nature Nanotechnology, 5(10), 703-711. https://doi.org/ 10.1038/nnano.2010.173
  • Di Lauro, C. (2020). Rotational Structure in Molecular Infrared Spectra. Elsevier.
  • Foxley, J., Tofanelli, M., Knappenberger, J. A., Ackerson, C. J., & Knappenberger Jr, K. L. (2025). Diverse Superatomic Magnetic and Spin Properties of Au144 (SC8H9)60 Clusters. ACS Central Science. 11(8) 1329-1335. https://doi.org/10.1021/acscentsci.5c00139
  • García de Arquer, F. P., Talapin, D. V., Klimov, V. I., Arakawa, Y., Bayer, M., & Sargent, E. H. (2021). Semiconductor quantum dots: Technological progress and future challenges. Science, 373(6555), eaaz8541.https://doi.org/10.1126/science.aaz8541
  • Gerke, F., Müller, R., Bitzenbauer, P., Ubben, M., & Weber, K. A. (2022). Requirements for Future Quantum Workforce - A Delphi study. In Journal of Physics: Conference Series, IOP Publishing, 2297(1), 1-8. 012017. https://doi.org/10.1088/1742-6596/2297/1/012017
  • Grandy, D. A. (2010). Everyday Quantum Reality. Indiana University Press.
  • Greinert, F., Müller, R., Bitzenbauer, P., Ubben, M. S., & Weber, K. A. (2023). Future Quantum Workforce: Competences, requirements, and forecasts. Physical Review Physics Education Research, 19(1), 010137. https://doi.org/10.1103/PhysRevPhysEducRes.19.010137
  • Gutorov, I., Gorelova, I., Bellini, F., & D’Ascenzo, F. (2025). Quantum for all: Using social media to raise public awareness of quantum technologies. Information, 16(5), 375. https://doi.org/10.3390/info16050375.
  • Harrison, P., & Valavanis, A. (2016). Quantum wells, wires and dots: Theoretical and computational physics of semiconductor nanostructures. John Wiley & Sons. https://doi.org/10.1002/9781118923337
  • Holincheck, N., Rosenberg, J. L., Zhang, X., Butler, T. N., Colandene, M., & Dreyfus, B. W. (2024). Quantum science and technologies in K-12: Supporting teachers to integrate quantum in STEM classrooms. Education Sciences, 14(3), 219.
  • Hossain, K. A. (2023). The potential and challenges of quantum technology in the modern era. Scientific Research Journal, 11(6) 41-49. http://doi.org/10.31364/SCIRJ/v11.i6.2023.P0623953
  • Hughes, C., Finke, D., German, D. A., Merzbacher, C., Vora, P. M., & Lewandowski, H. J. (2022). Assessing the needs of the quantum industry. IEEE Transactions on Education, 65(4), 592-601. https://doi.org/10.1109/TE.2022.3153841
  • International Union of Pure and Applied Chemistry (2024 October). International Year of Quantum Science and Technology. https://iupac.org/the-international-year-of-quantum-science-and-technology-2025/
  • Kaur, M., & Venegas-Gomez, A. (2022). Defining the quantum workforce landscape: A review of global quantum education initiatives. Optical Engineering, 61(8), 081806. https://doi.org/10.1117/1.OE.61.8.081806
  • Kramers, H. A. (2018). Quantum Mechanics. Courier Dover Publications.
  • Le Bellac, M. (2011). Quantum Physics. Cambridge University Press, 513.
  • Levine, I. N., Busch, D. H., & Shull, H. (2009). Quantum Chemistry, Upper Saddle River, NJ: Pearson Prentice Hall, 6th Edition.
  • Luo, W., Cao, L., Shi, Y., Wan, L., Zhang, H., Li, S., & Liu, A. Q. (2023). Recent progress in quantum photonic chips for quantum communication and internet. Light: Science & Applications, 12(1), 175. https://doi.org/10.1038/s41377-023-01173-8
  • Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, V., Babbush, R., & Martinis, J. (2017). Commercialize quantum technologies in five years. Nature, 543(7644), 171-174. https://doi.org/ 10.1038/543171a
  • Möller, M., & Vuik, C. (2017). On the impact of quantum computing technology on future developments in high-performance scientific computing. Ethics and Information Technology, 19(4), 253-269. https://doi.org/10.1007/s10676-017-9438-0
  • Oi, D. K., Ling, A., Grieve, J. A., Jennewein, T., Dinkelaker, A. N., & Krutzik, M. (2017). Nanosatellites for quantum science and technology. Contemporary Physics, 58(1), 25-52. https://doi.org/10.1080/00107514-2016-1235150
  • Paras, Yadav, K., Kumar, P., Teja, D. R., Chakraborty, S., Chakraborty, M., & Hang, D. R. (2022). A review on low-dimensional nanomaterials: Nanofabrication, characterization, and applications. Nanomaterials, 13(1), 160. https://103390/nano13010160
  • Peacock, K. A. (2007). The quantum revolution: A historical perspective. Bloomsbury Publishing USA.
  • Peskin, M. E. (2018). An Introduction to Quantum Field Theory. CRC Press.
  • Phillips, R. (2025). Dismantling the Master's Clock: On Race, Space, and Time. AK Press.
  • Piela, L. (2013). Ideas of Quantum Chemistry. Elsevier.
  • Ross, M. B., Mirkin, C. A., & Schatz, G. C. (2016). Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures. The Journal of Physical Chemistry C, 120(2), 816-830.
  • Schleich, W. P., Ranade, K. S., Anton, C., Arndt, M., Aspelmeyer, M., Bayer, M., & Zoller, P. (2016). Quantum technology: From research to application. Applied Physics B, 122(5), 130. https://doi.org/10.1007/s00340-016-6353-8
  • Seskir, Z. C., Goorney, S. R., & Chiofalo, M. L. (2024). Educating to the "Culture" of quantum technologies: A survey study on concepts for public awareness. European Journal of STEM Education, 9(1), 3. https:/doi.org/10.20897/ejsteme/14193
  • Singh, S. K., El Azzaoui, A., & Salim, M. M. (2020). Quantum communication technology for Future ICT- Review. Journal of Information Processing Systems, 16(6). https://doi.org/ 10.3745/JIPS/03.0154
  • Smith, N. L., Herbert, P. J., Tofanelli, M. A., Knappenberger, J. A., Ackerson, C. J., & Knappenberger Jr, K. L. (2025).
  • The influence of passivating ligand identity on Au25 (SR) 18 spin-polarized emission. The Journal of Physical Chemistry Letters, 16(20), 5168-5172.https://doi.org/10.1021/acs.jpclett./5c00723
  • Thimmappa, B. H. S. (2023). Water-a wonder chemical in the World. African Journal of Chemical Education, 13(3), 202-249.
  • Van Dam, J. A., Nazarov, Y. V., Bakkers, E. P., De Franceschi, S., & Kouwenhoven, L. P. (2006). Supercurrent reversal in quantum dots. Nature, 442(7103), 667-670. https://doi.org/10.1038/nature05018
  • Vedral, V. (2011). Living in a quantum world. Scientific American, 304(6), 38-43. https://doi.org/10.1038/scientificamerican0611-38
  • Wang, Y., & Song, X. (2020). Quantum Science and Quantum Technology. Statistical Science, 35(1), 51-74. https://doi.org/10.1214/19-STS745
  • Wang, Yazhen, & Xinyu Song, (2020). Quantum science and quantum technology. Statistical Science, 35(1), 51-74. https://doi.org/10.1214/19-STS745
  • Yang, M., Chen, X., Wang, Z., Zhu, Y., Pan, S., Chen, K., & Zheng, J. (2021). Zero→ two-dimensional metal nanostructures: An overview on methods of preparation, characterization, properties, and applications. Nanomaterials, 11(8), 1895. https://doi.org/10.3390/nanomaterials11081895
  • Yao, C., & Ma, Y. (2021). Superconducting Materials: Challenges and Opportunities for Large-scale Applications. Iscience, 24(6). https://doi.org/ 10.1016/j.isci.2021.102541
  • Yardley, J. (2012). Introduction to Molecular Energy Transfer. Elsevier.
  • Yousef, K. M., D’Alessandro, M., Yeh, M., Sinclair, N., Loncar, M., & Capasso, F. (2025). Metasurface quantum graphs for generalized Hong-Ou-Mandel interference. Science, 389(6758), 416-422. https://doi.org/10.1126/science.adw8404
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Eğitimi
Bölüm Derlemeler
Yazarlar

B.h.s. Thimmappa 0000-0002-0054-6973

Proje Numarası Not Applicable
Yayımlanma Tarihi 29 Eylül 2025
Gönderilme Tarihi 28 Nisan 2025
Kabul Tarihi 18 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 2

Kaynak Göster

APA Thimmappa, B. (2025). Perspectives on Quantum Science and Technology of the Future. Journal of the Turkish Chemical Society Section C: Chemical Education, 10(2), 121-138. https://doi.org/10.37995/jotcsc.1685989