İnceleme Makalesi
BibTex RIS Kaynak Göster

Calculating the Heating Load of an Aircraft in Accordance with Thermal Comfort

Yıl 2025, Cilt: 2 Sayı: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue, 21 - 40, 31.12.2025

Öz

This study investigates the total heating load of an Airbus A380 wide-body aircraft at four different flight altitudes—9000 m, 10,000 m, 11,000 m, and 12,000 m—under cruising conditions at Mach number 0.85. The purpose is to support the design of thermally ergonomic aircraft environments by calculating the heating load associated with varying flight altitudes. Heat transfers due to conduction, convection, and radiation from the cabin to the external atmosphere, along with internal heat gains from passengers, solar radiation, and electronic–electrical equipment, are comprehensively analyzed. The study reveals that heat loss by conduction increases with altitude, while radiation and convection losses decrease. The results show that conduction heat loss ranges from 6.85 to 10.14 kW, radiation heat loss from 6.64 to 8.26 kW, and convection heat loss from 238.64 to 370.69 kW. The constant heat gains from passengers, solar radiation, and onboard systems are 53.5 kW, 8.01 kW, and 21 kW, respectively. Consequently, the total heating load decreases with increasing altitude, ranging from 172.82 to 303.3 kW. These findings are significant for optimizing the Environmental Control System (ECS) in terms of both energy efficiency and passenger thermal comfort, emphasizing the importance of thermally ergonomic design in modern aviation.

Kaynakça

  • Abdeen, J. M. (2022). Implementation of new A/C system in airplane cabin. *International Journal of Scientific & Technology Research, 11*(1), 49–61.
  • Airbus. (2017). *Aircraft characteristics airport and maintenance planning. *
  • ASHRAE. (2011). *ASHRAE handbook: HVAC applications. * American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • ASHRAE. (2019). *Aircraft: Heating, ventilating, and air-conditioning applications* (2nd ed.).
  • Chowdhury, S. H., Fakhre, A., & Jennions, I. K. (2023). A review of aircraft environmental control system simulation and diagnostics. *Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 237*(11), 2453–2467.
  • Dumas, A., Angeli, D., & Trancossi, M. (2014). High altitude airship cabin sizing, pressurization and air conditioning. *Energy Procedia, 45, * 977–986.
  • Fan, J., & Zhou, Q. (2019). A review about thermal comfort in aircraft. *Journal of Thermal Science, 28*(2), 169–183.
  • Fioriti, M., & Di Fede, F. (2023). A design model for electric environmental control system in aircraft conceptual and preliminary design. *International Review of Aerospace Engineering, 16*(2), 58–72.
  • Federal Aviation Administration. (n.d.). *Aircraft insulation materials. * Retrieved from https://www.fire.tc.faa.gov/pdf/insulate.pdf
  • ISO/CD 14505-3. (2006). *Ergonomics of the thermal environment: Evaluation of thermal environments in vehicles. *
  • Janta, M., Senner, V., Bengler, K., Nöscher, M., & Nöske, I. (2013). Global and local thermal comfort in aircraft. In *Proceedings of the 15th International Conference on Environmental Ergonomics* (pp. 11–15). Queenstown, New Zealand.
  • Jennions, I., Ali, F., Miguez, M. E., & Escoba, I. C. (2020). Simulation of an aircraft environmental control system. *Applied Thermal Engineering, 172, * 114925.
  • Lange, P., Dehne, T., Schmeling, D., Dannhauer, A., & Gores, I. (2022). Realistic flight conditions on ground: New research facility for cabin ventilation. *CEAS Aeronautical Journal, 13, * 719–738.
  • Liping, P., Yingjie, W., Meng, L., Helin, Z., & Jun, W. (2013). Method for predicting optimal cabin operative temperature for civil aircraft. *Building and Environment, 69, * 160–170.
  • Liping, P., Yue, Q., Dong, L., & Meng, L. (2014). Thermal comfort assessment in civil aircraft cabins. *Chinese Journal of Aeronautics, 27*(2), 210–216.
  • Liu, Z., Dong, S., Zhou, Y., Zhang, S., & Fu, Y. (2022). Parameter identification and simulation method of 2-node thermal network model of aircraft cabin. In *Proceedings of the CSAA/IET International Conference on Aircraft Utility Systems (AUS 2022) * (pp. 17–20). Nanchang, China.
  • Maier, J., Marggraf-Micheel, C., Dehne, T., & Bosbach, J. (2017). Thermal comfort of different displacement ventilation systems in an aircraft passenger cabin. *Building and Environment, 111, * 256–264.
  • Mohan, R., Varghese, J., Shankar, M. L., & Vinay, C. A. (2016). Heat load calculation for the design of environmental control system of a light transport aircraft. *International Journal of Scientific & Engineering Research, 7*(5), 249–254.
  • Ozdemir, Y., Ozgoren, M., & Goktepeli, I. (2016). Energy analysis for an air-conditioning system of a commercial aircraft: Case study for Airbus A330. *International Journal of Energy Applications and Technologies, 3*(2), 60–67.
  • Paolo, A. (2009). *Numerical models for aircraft systems lecture notes, chapter 6: Environmental control system. * Politecnico di Milano.
  • Pereira, G. C., Turcio, W. H. L., Andrade, C. R., & Zaparoli, E. L. (2004). Heat transfer analysis of an aircraft cabin thermal transient. In *Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering (ENCIT)* (Paper CIT04-0611). Rio de Janeiro, Brazil.
  • Planes, T., Delbecq, S., Pommier-Budinger, V., & Benard, E. (2023). Modeling and design optimization of an electric environmental control system for commercial passenger aircraft. *Aerospace, 10*(3), 260.
  • Rebbechi, B. (1980). A review of aircraft cabin conditioning for operations in Australia. *Defence Science and Technology Organisation Aeronautical Research Laboratories, Mechanical Engineering Report 159.*
  • SAE Aerospace. (2004). *Applied thermodynamics manual: Air conditioning load analysis. * Society of Automotive Engineers.
  • Scaravetti, D., Sebastian, P., Pailhes, J., & Nadeau, J. (2006). Exploring design spaces in the search for embodiment design solutions and decision support. *Computational Engineering in Systems Applications: IMACS Multiconference, 2, * 1175–1180.
  • Zhang, T., Linlin, T., Lin, C., & Wang, S. (2012). Insulation of commercial aircraft with an air stream barrier along fuselage. *Building and Environment, 57, * 97–109.

Isıl Konfora Göre Bir Uçağın Isıtma Yükünün Hesaplanması

Yıl 2025, Cilt: 2 Sayı: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue, 21 - 40, 31.12.2025

Öz

Bu çalışma, Airbus A380 tipi geniş gövdeli bir uçağın seyir şartlarında (Mach 0.85 hızında) dört farklı uçuş irtifasında (9000 m, 10 000 m, 11 000 m ve 12 000 m) toplam ısıtma yükünü incelemektedir. Çalışmanın amacı, değişen uçuş irtifalarına bağlı olarak oluşan ısıtma yükünü hesaplayarak termal olarak ergonomik uçak iç ortamlarının tasarımına katkı sağlamaktır. Uçak kabininden dış atmosfere olan iletim, taşınım ve ışınım yoluyla gerçekleşen ısı kayıpları; yolculardan, güneş ışınımından ve elektronik–elektrikli donanımlardan kaynaklanan iç ısı kazançlarıyla birlikte kapsamlı biçimde analiz edilmiştir. Sonuçlar, uçuş irtifası arttıkça iletimle ısı kaybının arttığını, buna karşın ışınım ve taşınım kayıplarının azaldığını göstermektedir. Hesaplamalar, iletim ısı kaybının 6.85–10.14 kW, ışınım ısı kaybının 6.64–8.26 kW ve taşınım ısı kaybının 238.64–370.69 kW arasında değiştiğini; sabit ısı kazançlarının ise yolculardan 53.5 kW, güneş ışınımından 8.01 kW ve sistemlerden 21 kW olduğunu ortaya koymuştur. Buna göre toplam ısıtma yükü, artan irtifa ile azalarak 172.82–303.3 kW aralığında gerçekleşmektedir. Elde edilen bulgular, çevresel kontrol sisteminin (ECS) enerji verimliliği ve yolcu termal konforu açısından optimize edilmesinde önemli veriler sunmakta; modern havacılıkta termal olarak ergonomik tasarımın önemini vurgulamaktadır.

Kaynakça

  • Abdeen, J. M. (2022). Implementation of new A/C system in airplane cabin. *International Journal of Scientific & Technology Research, 11*(1), 49–61.
  • Airbus. (2017). *Aircraft characteristics airport and maintenance planning. *
  • ASHRAE. (2011). *ASHRAE handbook: HVAC applications. * American Society of Heating, Refrigerating and Air-Conditioning Engineers.
  • ASHRAE. (2019). *Aircraft: Heating, ventilating, and air-conditioning applications* (2nd ed.).
  • Chowdhury, S. H., Fakhre, A., & Jennions, I. K. (2023). A review of aircraft environmental control system simulation and diagnostics. *Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 237*(11), 2453–2467.
  • Dumas, A., Angeli, D., & Trancossi, M. (2014). High altitude airship cabin sizing, pressurization and air conditioning. *Energy Procedia, 45, * 977–986.
  • Fan, J., & Zhou, Q. (2019). A review about thermal comfort in aircraft. *Journal of Thermal Science, 28*(2), 169–183.
  • Fioriti, M., & Di Fede, F. (2023). A design model for electric environmental control system in aircraft conceptual and preliminary design. *International Review of Aerospace Engineering, 16*(2), 58–72.
  • Federal Aviation Administration. (n.d.). *Aircraft insulation materials. * Retrieved from https://www.fire.tc.faa.gov/pdf/insulate.pdf
  • ISO/CD 14505-3. (2006). *Ergonomics of the thermal environment: Evaluation of thermal environments in vehicles. *
  • Janta, M., Senner, V., Bengler, K., Nöscher, M., & Nöske, I. (2013). Global and local thermal comfort in aircraft. In *Proceedings of the 15th International Conference on Environmental Ergonomics* (pp. 11–15). Queenstown, New Zealand.
  • Jennions, I., Ali, F., Miguez, M. E., & Escoba, I. C. (2020). Simulation of an aircraft environmental control system. *Applied Thermal Engineering, 172, * 114925.
  • Lange, P., Dehne, T., Schmeling, D., Dannhauer, A., & Gores, I. (2022). Realistic flight conditions on ground: New research facility for cabin ventilation. *CEAS Aeronautical Journal, 13, * 719–738.
  • Liping, P., Yingjie, W., Meng, L., Helin, Z., & Jun, W. (2013). Method for predicting optimal cabin operative temperature for civil aircraft. *Building and Environment, 69, * 160–170.
  • Liping, P., Yue, Q., Dong, L., & Meng, L. (2014). Thermal comfort assessment in civil aircraft cabins. *Chinese Journal of Aeronautics, 27*(2), 210–216.
  • Liu, Z., Dong, S., Zhou, Y., Zhang, S., & Fu, Y. (2022). Parameter identification and simulation method of 2-node thermal network model of aircraft cabin. In *Proceedings of the CSAA/IET International Conference on Aircraft Utility Systems (AUS 2022) * (pp. 17–20). Nanchang, China.
  • Maier, J., Marggraf-Micheel, C., Dehne, T., & Bosbach, J. (2017). Thermal comfort of different displacement ventilation systems in an aircraft passenger cabin. *Building and Environment, 111, * 256–264.
  • Mohan, R., Varghese, J., Shankar, M. L., & Vinay, C. A. (2016). Heat load calculation for the design of environmental control system of a light transport aircraft. *International Journal of Scientific & Engineering Research, 7*(5), 249–254.
  • Ozdemir, Y., Ozgoren, M., & Goktepeli, I. (2016). Energy analysis for an air-conditioning system of a commercial aircraft: Case study for Airbus A330. *International Journal of Energy Applications and Technologies, 3*(2), 60–67.
  • Paolo, A. (2009). *Numerical models for aircraft systems lecture notes, chapter 6: Environmental control system. * Politecnico di Milano.
  • Pereira, G. C., Turcio, W. H. L., Andrade, C. R., & Zaparoli, E. L. (2004). Heat transfer analysis of an aircraft cabin thermal transient. In *Proceedings of the 10th Brazilian Congress of Thermal Sciences and Engineering (ENCIT)* (Paper CIT04-0611). Rio de Janeiro, Brazil.
  • Planes, T., Delbecq, S., Pommier-Budinger, V., & Benard, E. (2023). Modeling and design optimization of an electric environmental control system for commercial passenger aircraft. *Aerospace, 10*(3), 260.
  • Rebbechi, B. (1980). A review of aircraft cabin conditioning for operations in Australia. *Defence Science and Technology Organisation Aeronautical Research Laboratories, Mechanical Engineering Report 159.*
  • SAE Aerospace. (2004). *Applied thermodynamics manual: Air conditioning load analysis. * Society of Automotive Engineers.
  • Scaravetti, D., Sebastian, P., Pailhes, J., & Nadeau, J. (2006). Exploring design spaces in the search for embodiment design solutions and decision support. *Computational Engineering in Systems Applications: IMACS Multiconference, 2, * 1175–1180.
  • Zhang, T., Linlin, T., Lin, C., & Wang, S. (2012). Insulation of commercial aircraft with an air stream barrier along fuselage. *Building and Environment, 57, * 97–109.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Akıllı Hareketlilik
Bölüm İnceleme Makalesi
Yazarlar

Nur Tuğçe Gözüküçük

Gönderilme Tarihi 4 Kasım 2025
Kabul Tarihi 24 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue

Kaynak Göster

APA Gözüküçük, N. T. (2025). Calculating the Heating Load of an Aircraft in Accordance with Thermal Comfort. Ege Üniversitesi Ulaştırma Yönetimi Araştırmaları Dergisi, 2(Aviation Technologies and Applications Conference (ATAConf’25) Special Issue), 21-40.