Araştırma Makalesi
BibTex RIS Kaynak Göster

A Safety Evaluation of Drone Taxi Operations Based on Impact Energy and Fatality Probability

Yıl 2025, Cilt: 2 Sayı: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue, 60 - 84, 31.12.2025

Öz

The drone taxi systems developed within the scope of the Urban Air Mobility (UAM) is likely to play a significant role in the future’s transportation infrastructure . To integrate such systems with the national air space in a safe manner, quantitative analysis methods which take into account risks both on the ground and in the air. This study conducts a safety analysis through integration of the expected safety level framework with the Specific Operations Risk Assessment (SORA) methodology to assess the applicability of drone taxi operations. The analysis was applied to a sample VTOL platform performing flights for drone taxi purposes. The findings point out the fact that achieving a target safety level for manned aviation is possible only if high system reliability, low exposure area, limited population density, and effective risk-reducing measures are made available concurrently. The study contributes to urban air mobility strategies by proposing a systematic safety approach in the transition from freight to passenger transport.

Kaynakça

  • Airbus. (2025). CityAirbus. https://www.airbus.com/en/innovation/energy-transition/hybrid-and-electric-flight/cityairbus-nextgen
  • AOPA. (2019). Boeing flies electric VTOL prototype. https://www.aopa.org/news-and-media/all-news/2019/january/24/boeing-flies-electric-vtol-prototype
  • Capitán, C., Capitán, J., Castano, A. R., & Ollero, A. (2019). Risk assessment based on SORA methodology for a UAS media production application. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 451–459. https://ieeexplore.ieee.org/abstract/document/8798211/
  • Clothier, R. A., and Walker, R. A. (2015). Safety Risk Management of Unmanned Aircraft Systems. In K. P. Valavanis & G. J. Vachtsevanos (Eds.), Handbook of Unmanned Aerial Vehicles (pp. 2229–2275). Springer Netherlands. https://doi.org/10.1007/978-90-481-9707-1_39
  • Clothier, R. A., Williams, B. P., & Fulton, N. L. (2015). Structuring the safety case for unmanned aircraft system operations in non-segregated airspace. Safety Science, 79, 213–228. https://doi.org/10.1016/j.ssci.2015.06.007
  • Clothier, R., and Walker, R. (2006). Determination and evaluation of UAV safety objectives. Proceedings of the 21st International Conference on Unmanned Air Vehicle Systems, 18–1. https://eprints.qut.edu.au/4183/
  • Cohen, A., Shaheen, S., & Farrar, E. (2021). Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Transactions on Intelligent Transportation Systems, PP, 1–14. https://doi.org/10.1109/TITS.2021.3082767
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2008). Evaluating the risk of unmanned aircraft ground impacts. 2008 16th Mediterranean Conference on Control and Automation, 709–716. https://ieeexplore.ieee.org/abstract/document/4602249/
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, Les. A. (Eds.). (2009). Thoughts and Recommendations on a UAS Integration Roadmap. In On Integrating Unmanned Aircraft Systems into the National Airspace System (Vol. 36, pp. 109–130). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8672-4_6
  • del Estal Herrero, A., Apter, N., & Hristozov, S. (2025). A Parametric Comparison of JARUS SORA 2.0 and 2.5 Ground Risk Models. Engineering Proceedings, 90(1), 47.
  • Denney, E., and Pai, G. (2016). Architecting a safety case for UAS flight operations. 34th International System Safety Conference, 12.
  • Denney, E., Pai, G., & Johnson, M. (2018). Towards a rigorous basis for specific operations risk assessment of UAS. 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 1–10. https://ieeexplore.ieee.org/abstract/document/8569475/
  • EASA. (2021). Easy Access Rules for Unmanned Aircraft Systems (Regulations (EU) 2019/947 and (EU) 2019/945). European Union Aviation Safety Agency Cologne, Germany.
  • EASA. (2023). Certification specification 25 (CS25). https://www.easa.europa.eu/en/document-library/certification-specifications
  • EASA. (2024). Özel Operasyon Risk Değerlendirmesi (SORA). https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/specific-category-civil-drones/specific-operations-risk-assessment-sora
  • EASA. (2025a). Population density in EASA Member States—Exploring population density in your country. https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/statistical-population-density-easa-member-states
  • EASA, E. (2025b, February 1). What is UAM | EASA. https://www.easa.europa.eu/en/what-is-uam
  • EHang. (2025). Autonomous Aerial Vehicle (AAV) Innovator for Urban Air Mobility (UAM). https://www.ehang.com/
  • Explosion.com. (2025). Automobile accidents in USA causing deaths. https://www. explosion.com/129774/automobile-accidents-in-usa-causing-deaths/
  • FAA. (2015). Task Force Recommendations Final Report, Unmanned Aircraft Systems (UAS) Registration Task Force (RTF). https://www.faa.gov/sites/faa.gov/files/uas/resources/public_records/RTFARCFinalReport_11-21-15.pdf
  • FAA. (2023). Urban Air Mobility (UAM) Concept of Operations | Federal Aviation Administration. https://www.faa.gov/air-taxis/uam_blueprint
  • Fortune. (2024). Amazon gets FAA approval to expand Prime Air drone deliveries for online orders. https://fortune.com/2024/05/31/amazon-faa-approval-expand-prime-air-drone-deliveries-online-orders/
  • Han, P., Yang, X., Zhao, Y., Guan, X., & Wang, S. (2022). Quantitative Ground Risk Assessment for Urban Logistical Unmanned Aerial Vehicle (UAV) Based on Bayesian Network. Sustainability, 14(9), Article 9. https://doi.org/10.3390/su14095733
  • ICAO. (2009). Doc 9859 – Safety Management Manual (No. ISBN 978-92-9231-295-4). https://www.icao.int/safety-management
  • Janik, P., Zawistowski, M., Fellner, R., & Zawistowski, G. (2021a). Unmanned aircraft systems risk assessment based on SORA for first responders and disaster management. Applied Sciences, 11(12), 5364.
  • Janik, P., Zawistowski, M., Fellner, R., & Zawistowski, G. (2021b). Unmanned aircraft systems risk assessment based on SORA for first responders and disaster management. Applied Sciences, 11(12), 5364.
  • JARUS. (2024). JARUS guidelines on Specific Operations Risk Assessment (SORA). http://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-JAR_doc_25.pdf
  • Long, Q., Ma, J., Jiang, F., & Webster, C. J. (2023). Demand analysis in urban air mobility: A literature review. Journal of Air Transport Management, 112, 102436.
  • Melnyk, R., Schrage, D., Volovoi, V., & Jimenez, H. (2014). A third-party casualty risk model for unmanned aircraft system operations. Reliability Engineering & System Safety, 124, 105–116. https://doi.org/10.1016/j.ress.2013.11.016
  • Miles, T., Suarez, B., Kunzi, F., & Jackson, R. (2019). SORA application to large RPAS flight plans. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), 1–6. https://ieeexplore.ieee.org/abstract/document/9081696/
  • Moradi, N., Wang, C., & Mafakheri, F. (2024). Urban air mobility for last-mile transportation: A review. Vehicles, 6(3), 1383–1414.
  • Murça, M. C. R. (2021). Identification and prediction of urban airspace availability for emerging air mobility operations. Transportation Research Part C: Emerging Technologies, 131, 103274.
  • Nas, M. (2015). Classifying unmanned aircraft systems: Developing a legal framework for the purposes of airworthiness certification [PhD Thesis, Murdoch University]. https://researchportal.murdoch.edu.au/esploro/outputs/graduate/Classifying-unmanned-aircraft-systems-Developing-a/991005542121507891
  • Pak, H., Asmer, L., Kokus, P., Schuchardt, B. I., End, A., Meller, F., Schweiger, K., Torens, C., Barzantny, C., Becker, D., Ernst, J. M., Jäger, F., Laudien, T., Naeem, N., Papenfuß, A., Pertz, J., Prakasha, P. S., Ratei, P., Reimer, F., … Zhu, C. (2023). Can Urban Air Mobility become reality? Opportunities, challenges and selected research results (No. arXiv:2309.12680). arXiv. http://arxiv.org/abs/2309.12680
  • Pons-Prats, J., Živojinović, T., & Kuljanin, J. (2022). On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm. Transportation Research Part E: Logistics and Transportation Review, 166, 102868.
  • Pothana, P., Joy, J., Snyder, P., & Vidhyadharan, S. (2023). Uas air-risk assessment in and around airports. 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS), 1–11. https://ieeexplore.ieee.org/abstract/document/10124319/
  • Savas, T., Ozdemir, U., Sahin, O., & Usanmaz, O. (2025). Manned and Unmanned Flights in the Urban Air Mobility Era: Impacts and Future Perspectives. 2025 Integrated Communications, Navigation and Surveillance Conference (ICNS), 1–10. https://ieeexplore.ieee.org/abstract/document/10976966/
  • Schrank, D., Eisele, B., Lomax, T., & Bak, J. (2015). 2015 Urban Mobility Scorecard Texas A Transportation Institute 2015.
  • Sengupta, D., & Das, S. K. (2023). Urban air mobility: Vision, challenges and opportunities. 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR), 1–6. https://ieeexplore.ieee.org/abstract/document/10148014/
  • SESAR. (2017). European drones outlook study—Publications Office of the EU. https://op.europa.eu/en/publication-detail/-/publication/93d90664-28b3-11e7-ab65-01aa75ed71a1/language-en
  • Shao, P.-C. (2020). Risk assessment for UAS logistic delivery under UAS traffic management environment. Aerospace, 7(10), 140.
  • Shelley, A. (2016). A Model of Human Harm from a Falling Unmanned Aircraft: Implications for UAS Regulation. International Journal of Aviation, Aeronautics, and Aerospace, 3(3). https://doi.org/10.15394/ijaaa.2016.1120
  • Shelley, A. (2021). Quantifying the Cost of Drone-Related Threats in New Zealand. National Security Journal, 3. https://doi.org/10.36878/nsj20211108.03
  • Straubinger, A., Rothfeld, R., Shamiyeh, M., Büchter, K.-D., Kaiser, J., & Plötner, K. O. (2020). An overview of current research and developments in urban air mobility–Setting the scene for UAM introduction. Journal of Air Transport Management, 87, 101852.
  • Terkildsen, K. H., & Jensen, K. (2019). Towards a tool for assessing uas compliance with the jarus sora guidelines. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 460–466. https://ieeexplore.ieee.org/abstract/document/8798236/
  • Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K. H., Homola, J., Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., & Verma, S. A. (2018, June 25). Urban Air Mobility Airspace Integration Concepts and Considerations. 2018 Aviation Technology, Integration, and Operations Conference. 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia. https://doi.org/10.2514/6.2018-3676
  • Tomić, L., Čokorilo, O., Torok, A., & Kaplanović, S. (2025). UAV in Aviation: Cost of Unsafe Events. In O. Prentkovskis, I. Yatskiv, P. Skačkauskas, M. Karpenko, & M. Stosiak (Eds.), TRANSBALTICA XV: Transportation Science and Technology (pp. 3–12). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-85390-6_1
  • Tran, T. D., Thiriet, J.-M., Marchand, N., & El Mrabti, A. (2021). A Cybersecurity Risk Framework for Unmanned Aircraft Systems under Specific Category. Journal of Intelligent & Robotic Systems, 104(1), 4. https://doi.org/10.1007/s10846-021-01512-0
  • Volocopter. (2025). Volocopter brings urban air mobility to life. https://www.volocopter.com/en
  • Wang, L., Deng, X., Gui, J., Jiang, P., Zeng, F., & Wan, S. (2023). A review of urban air mobility-enabled intelligent transportation systems: Mechanisms, applications and challenges. Journal of Systems Architecture, 141, 102902. Weibel, R., and Hansman, R. J. (2004, September 20). Safety Considerations for Operation of Different Classes of UAVs in the NAS. AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum. AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum, Chicago, Illinois. https://doi.org/10.2514/6.2004

Drone Taksi Operasyonlarının Çarpma Enerjisi ve Ölüm Olasılığına Dayalı Emniyet Değerlendirmesi

Yıl 2025, Cilt: 2 Sayı: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue, 60 - 84, 31.12.2025

Öz

Kentsel Hava Hareketliliği kapsamında geliştirilen drone taksi sistemleri, geleceğin ulaşım altyapısında önemli bir rol üstlenmeye adaydır. Bu sistemlerin ulusal hava sahasına güvenli entegrasyonu için hem yer hem de hava risklerini dikkate alan nicel analiz yöntemlerine ihtiyaç vardır. Bu çalışma, drone taksi operasyonlarının uygulanabilirliğini değerlendirmek amacıyla beklenen emniyet seviyesi çerçevesini, SORA (Specific Operations Risk Assessment) metodolojisiyle bütünleştirerek, emniyet analizini gerçekleştirmektedir. Analiz, drone taksi amaçlı uçuş gerçekleştiren örnek bir VTOL platformunda uygulanmıştır. Bulgular, insanlı havacılık düzeyindeki bir hedef emniyet seviyesine ulaşmak için; yüksek sistem güvenilirliği, düşük maruz kalma alanı, sınırlı nüfus yoğunluğu ve etkili risk azaltıcı önlemlerin eş zamanlı olarak sağlanması durumunda ulaşılabileceğini göstermektedir. Çalışma, kentsel hava hareketliliği stratejilerine katkı sağlayarak, yük taşımacılığından yolcu taşımacılığına geçiş sürecinde sistematik bir emniyet yaklaşımı önermektedir.

Kaynakça

  • Airbus. (2025). CityAirbus. https://www.airbus.com/en/innovation/energy-transition/hybrid-and-electric-flight/cityairbus-nextgen
  • AOPA. (2019). Boeing flies electric VTOL prototype. https://www.aopa.org/news-and-media/all-news/2019/january/24/boeing-flies-electric-vtol-prototype
  • Capitán, C., Capitán, J., Castano, A. R., & Ollero, A. (2019). Risk assessment based on SORA methodology for a UAS media production application. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 451–459. https://ieeexplore.ieee.org/abstract/document/8798211/
  • Clothier, R. A., and Walker, R. A. (2015). Safety Risk Management of Unmanned Aircraft Systems. In K. P. Valavanis & G. J. Vachtsevanos (Eds.), Handbook of Unmanned Aerial Vehicles (pp. 2229–2275). Springer Netherlands. https://doi.org/10.1007/978-90-481-9707-1_39
  • Clothier, R. A., Williams, B. P., & Fulton, N. L. (2015). Structuring the safety case for unmanned aircraft system operations in non-segregated airspace. Safety Science, 79, 213–228. https://doi.org/10.1016/j.ssci.2015.06.007
  • Clothier, R., and Walker, R. (2006). Determination and evaluation of UAV safety objectives. Proceedings of the 21st International Conference on Unmanned Air Vehicle Systems, 18–1. https://eprints.qut.edu.au/4183/
  • Cohen, A., Shaheen, S., & Farrar, E. (2021). Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Transactions on Intelligent Transportation Systems, PP, 1–14. https://doi.org/10.1109/TITS.2021.3082767
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2008). Evaluating the risk of unmanned aircraft ground impacts. 2008 16th Mediterranean Conference on Control and Automation, 709–716. https://ieeexplore.ieee.org/abstract/document/4602249/
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, Les. A. (Eds.). (2009). Thoughts and Recommendations on a UAS Integration Roadmap. In On Integrating Unmanned Aircraft Systems into the National Airspace System (Vol. 36, pp. 109–130). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8672-4_6
  • del Estal Herrero, A., Apter, N., & Hristozov, S. (2025). A Parametric Comparison of JARUS SORA 2.0 and 2.5 Ground Risk Models. Engineering Proceedings, 90(1), 47.
  • Denney, E., and Pai, G. (2016). Architecting a safety case for UAS flight operations. 34th International System Safety Conference, 12.
  • Denney, E., Pai, G., & Johnson, M. (2018). Towards a rigorous basis for specific operations risk assessment of UAS. 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 1–10. https://ieeexplore.ieee.org/abstract/document/8569475/
  • EASA. (2021). Easy Access Rules for Unmanned Aircraft Systems (Regulations (EU) 2019/947 and (EU) 2019/945). European Union Aviation Safety Agency Cologne, Germany.
  • EASA. (2023). Certification specification 25 (CS25). https://www.easa.europa.eu/en/document-library/certification-specifications
  • EASA. (2024). Özel Operasyon Risk Değerlendirmesi (SORA). https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/specific-category-civil-drones/specific-operations-risk-assessment-sora
  • EASA. (2025a). Population density in EASA Member States—Exploring population density in your country. https://www.easa.europa.eu/en/domains/drones-air-mobility/operating-drone/statistical-population-density-easa-member-states
  • EASA, E. (2025b, February 1). What is UAM | EASA. https://www.easa.europa.eu/en/what-is-uam
  • EHang. (2025). Autonomous Aerial Vehicle (AAV) Innovator for Urban Air Mobility (UAM). https://www.ehang.com/
  • Explosion.com. (2025). Automobile accidents in USA causing deaths. https://www. explosion.com/129774/automobile-accidents-in-usa-causing-deaths/
  • FAA. (2015). Task Force Recommendations Final Report, Unmanned Aircraft Systems (UAS) Registration Task Force (RTF). https://www.faa.gov/sites/faa.gov/files/uas/resources/public_records/RTFARCFinalReport_11-21-15.pdf
  • FAA. (2023). Urban Air Mobility (UAM) Concept of Operations | Federal Aviation Administration. https://www.faa.gov/air-taxis/uam_blueprint
  • Fortune. (2024). Amazon gets FAA approval to expand Prime Air drone deliveries for online orders. https://fortune.com/2024/05/31/amazon-faa-approval-expand-prime-air-drone-deliveries-online-orders/
  • Han, P., Yang, X., Zhao, Y., Guan, X., & Wang, S. (2022). Quantitative Ground Risk Assessment for Urban Logistical Unmanned Aerial Vehicle (UAV) Based on Bayesian Network. Sustainability, 14(9), Article 9. https://doi.org/10.3390/su14095733
  • ICAO. (2009). Doc 9859 – Safety Management Manual (No. ISBN 978-92-9231-295-4). https://www.icao.int/safety-management
  • Janik, P., Zawistowski, M., Fellner, R., & Zawistowski, G. (2021a). Unmanned aircraft systems risk assessment based on SORA for first responders and disaster management. Applied Sciences, 11(12), 5364.
  • Janik, P., Zawistowski, M., Fellner, R., & Zawistowski, G. (2021b). Unmanned aircraft systems risk assessment based on SORA for first responders and disaster management. Applied Sciences, 11(12), 5364.
  • JARUS. (2024). JARUS guidelines on Specific Operations Risk Assessment (SORA). http://jarus-rpas.org/wp-content/uploads/2024/06/SORA-v2.5-Main-Body-Release-JAR_doc_25.pdf
  • Long, Q., Ma, J., Jiang, F., & Webster, C. J. (2023). Demand analysis in urban air mobility: A literature review. Journal of Air Transport Management, 112, 102436.
  • Melnyk, R., Schrage, D., Volovoi, V., & Jimenez, H. (2014). A third-party casualty risk model for unmanned aircraft system operations. Reliability Engineering & System Safety, 124, 105–116. https://doi.org/10.1016/j.ress.2013.11.016
  • Miles, T., Suarez, B., Kunzi, F., & Jackson, R. (2019). SORA application to large RPAS flight plans. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), 1–6. https://ieeexplore.ieee.org/abstract/document/9081696/
  • Moradi, N., Wang, C., & Mafakheri, F. (2024). Urban air mobility for last-mile transportation: A review. Vehicles, 6(3), 1383–1414.
  • Murça, M. C. R. (2021). Identification and prediction of urban airspace availability for emerging air mobility operations. Transportation Research Part C: Emerging Technologies, 131, 103274.
  • Nas, M. (2015). Classifying unmanned aircraft systems: Developing a legal framework for the purposes of airworthiness certification [PhD Thesis, Murdoch University]. https://researchportal.murdoch.edu.au/esploro/outputs/graduate/Classifying-unmanned-aircraft-systems-Developing-a/991005542121507891
  • Pak, H., Asmer, L., Kokus, P., Schuchardt, B. I., End, A., Meller, F., Schweiger, K., Torens, C., Barzantny, C., Becker, D., Ernst, J. M., Jäger, F., Laudien, T., Naeem, N., Papenfuß, A., Pertz, J., Prakasha, P. S., Ratei, P., Reimer, F., … Zhu, C. (2023). Can Urban Air Mobility become reality? Opportunities, challenges and selected research results (No. arXiv:2309.12680). arXiv. http://arxiv.org/abs/2309.12680
  • Pons-Prats, J., Živojinović, T., & Kuljanin, J. (2022). On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm. Transportation Research Part E: Logistics and Transportation Review, 166, 102868.
  • Pothana, P., Joy, J., Snyder, P., & Vidhyadharan, S. (2023). Uas air-risk assessment in and around airports. 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS), 1–11. https://ieeexplore.ieee.org/abstract/document/10124319/
  • Savas, T., Ozdemir, U., Sahin, O., & Usanmaz, O. (2025). Manned and Unmanned Flights in the Urban Air Mobility Era: Impacts and Future Perspectives. 2025 Integrated Communications, Navigation and Surveillance Conference (ICNS), 1–10. https://ieeexplore.ieee.org/abstract/document/10976966/
  • Schrank, D., Eisele, B., Lomax, T., & Bak, J. (2015). 2015 Urban Mobility Scorecard Texas A Transportation Institute 2015.
  • Sengupta, D., & Das, S. K. (2023). Urban air mobility: Vision, challenges and opportunities. 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR), 1–6. https://ieeexplore.ieee.org/abstract/document/10148014/
  • SESAR. (2017). European drones outlook study—Publications Office of the EU. https://op.europa.eu/en/publication-detail/-/publication/93d90664-28b3-11e7-ab65-01aa75ed71a1/language-en
  • Shao, P.-C. (2020). Risk assessment for UAS logistic delivery under UAS traffic management environment. Aerospace, 7(10), 140.
  • Shelley, A. (2016). A Model of Human Harm from a Falling Unmanned Aircraft: Implications for UAS Regulation. International Journal of Aviation, Aeronautics, and Aerospace, 3(3). https://doi.org/10.15394/ijaaa.2016.1120
  • Shelley, A. (2021). Quantifying the Cost of Drone-Related Threats in New Zealand. National Security Journal, 3. https://doi.org/10.36878/nsj20211108.03
  • Straubinger, A., Rothfeld, R., Shamiyeh, M., Büchter, K.-D., Kaiser, J., & Plötner, K. O. (2020). An overview of current research and developments in urban air mobility–Setting the scene for UAM introduction. Journal of Air Transport Management, 87, 101852.
  • Terkildsen, K. H., & Jensen, K. (2019). Towards a tool for assessing uas compliance with the jarus sora guidelines. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 460–466. https://ieeexplore.ieee.org/abstract/document/8798236/
  • Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K. H., Homola, J., Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., & Verma, S. A. (2018, June 25). Urban Air Mobility Airspace Integration Concepts and Considerations. 2018 Aviation Technology, Integration, and Operations Conference. 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia. https://doi.org/10.2514/6.2018-3676
  • Tomić, L., Čokorilo, O., Torok, A., & Kaplanović, S. (2025). UAV in Aviation: Cost of Unsafe Events. In O. Prentkovskis, I. Yatskiv, P. Skačkauskas, M. Karpenko, & M. Stosiak (Eds.), TRANSBALTICA XV: Transportation Science and Technology (pp. 3–12). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-85390-6_1
  • Tran, T. D., Thiriet, J.-M., Marchand, N., & El Mrabti, A. (2021). A Cybersecurity Risk Framework for Unmanned Aircraft Systems under Specific Category. Journal of Intelligent & Robotic Systems, 104(1), 4. https://doi.org/10.1007/s10846-021-01512-0
  • Volocopter. (2025). Volocopter brings urban air mobility to life. https://www.volocopter.com/en
  • Wang, L., Deng, X., Gui, J., Jiang, P., Zeng, F., & Wan, S. (2023). A review of urban air mobility-enabled intelligent transportation systems: Mechanisms, applications and challenges. Journal of Systems Architecture, 141, 102902. Weibel, R., and Hansman, R. J. (2004, September 20). Safety Considerations for Operation of Different Classes of UAVs in the NAS. AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum. AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum, Chicago, Illinois. https://doi.org/10.2514/6.2004
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hava Taşımacılığı ve Nakliye Hizmetleri
Bölüm Araştırma Makalesi
Yazarlar

Tamer Savaş 0000-0003-2136-2003

Gönderilme Tarihi 15 Kasım 2025
Kabul Tarihi 22 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: Aviation Technologies and Applications Conference (ATAConf'25) Special Issue

Kaynak Göster

APA Savaş, T. (2025). A Safety Evaluation of Drone Taxi Operations Based on Impact Energy and Fatality Probability. Ege Üniversitesi Ulaştırma Yönetimi Araştırmaları Dergisi, 2(Aviation Technologies and Applications Conference (ATAConf’25) Special Issue), 60-84.