Araştırma Makalesi
BibTex RIS Kaynak Göster

TIME SERIES ANALYSIS OF CRITICAL RAW MATERIALS AND TECHNOLOGIES WITHIN THE SCOPE OF TWIN TRANSFORMATION

Yıl 2024, , 519 - 539, 06.12.2024
https://doi.org/10.54452/jrb.1491337

Öz

Critical raw materials are raw materials that are very important for a sustainable economy and carry high risks associated with their supply. The use of critical raw materials in the technologies used in the twin transformation, which combines the green transformation and the transformation of technology, increases the importance and supply risk of these raw materials. In this context, it is aimed to examine the technologies, practices and policies that pave the way for this transformation in the country and to examine them through time series analysis. Analysis of historical data and future projections of solar, wind, hydraulic, geothermal, and thermal energy, which have significant potential in our country for green transformation and are the source of most technologies that use critical raw materials, are presented. The time series analysis methods used in the study are simple moving average, weighted moving average and exponential moving average methods. Since the exponential moving average gives more weight to current data, it gives more positive results in terms of forecast success and error levels. Thus, the future trends of each energy source will reveal the demand level of raw materials used in technologies related to these energy sources and the criticality of these raw materials.

Kaynakça

  • Akyol, M, & Mete, E (2021) Teknoloji yoğunluklarına göre dış ticaretin ekonomik büyüme üzerine etkisi: Türkiye örneği Maliye Dergisi, 180, 208-232.
  • Aglund, S, & Benson, J (2022) Identifying Risks in the Supply Chain of Materials at Volvo Cars A Concept Modelling of Environmental, Social, and Technical Risks
  • Arnold, M G, & Hockerts, K (2011) The greening dutchman: Philips’ process of green flagging to drive sustainable innovations Business Strategy and the Environment, 20(6), 394-407
  • Aydın, S G, & Aydoğdu, G (2022) Makine öğrenmesi algoritmaları kullanılarak Türkiye ve AB ülkelerinin CO2 emisyonlarının tahmini Avrupa Bilim ve Teknoloji Dergisi, (37), 42-46
  • Buchert, M, Manhart, A, Bleher, D, & Pingel, D (2012) Recycling critical raw materials from waste electronic equipment Freiburg: Öko-Institut eV, 49(0), 30-40
  • Brown, R.G., 1959. Statistical forecasting for inventory control. McGraw/Hill
  • Cozzi, L, Gould, T, Bouckart, S, Crow, D, Kim, T Y, McGlade, C, & Wetzel, D (2020) World energy outlook 2020 International Energy Agency: Paris, France, 1-461
  • Cristóbal, J., Jubayed, M., Wulff, N., & Schebek, L. (2020). Life cycle losses of critical raw materials from solar and wind energy technologies and their role in the future material availability. Resources, Conservation and Recycling, 161, 104916.
  • Cusack, P. B., Courtney, R., Healy, M. G., O’Donoghue, L. M., & Ujaczki, É. (2019). An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period. Journal of Cleaner Production, 208, 393-401.
  • David, M., & Koch, F. (2019). “Smart is not smart enough!” Anticipating critical raw material use in smart city concepts: the example of smart grids. Sustainability, 11(16), 4422.
  • Demirtaş, M, Turan, A, Car, E, & Yücel, O (2017) Kritik Hammaddeler Metalurji ve Malzeme Mühendisleri Odası Dergisi, 183, 28-33
  • Espinoza, L. T., Loibl, A. N. T. O. N. I. A., Langkau, S. A. B. I. N. E., De Koning, A. R. J. A. N., Van Der Voet, E. S. T. E. R., & Michaux, S. (2021). Report on the future use of critical raw materials. Accessed the 5th of March.
  • Erdmann, L, & Graedel, T E (2011) Criticality of non-fuel minerals: a review of major approaches and analyses Environmental science & technology, 45(18), 7620-7630
  • European Commission (EC), Study on the Critical Raw Materials for the EU Final Report 2020
  • Ferro, P., Bonollo, F., & Cruz, S. A. (2021). Product design from an environmental and critical raw materials perspective. International Journal of Sustainable Engineering, 14(1), 1-11.
  • Gao, D, Kinouchi, Y, Ito K, and Zhao, X, 2003 Time Series Identifying and Modeling with Neural Networks GWEC, “Global wind report 2021” Global Wind Energy Council (GWEC), https://gwecnet/global-wind- report-2021/ , 25 Kasım 2023
  • Göçmen-Polat, E. (2024). Assessment of Critical Raw Materials by Addressing Sustainable Development Goals Using Fuzzy MCDM Approach. In Harmonizing Global Efforts in Meeting Sustainable Development Goals (pp. 164-181). IGI Global.
  • Gültek, E, & Altın, S (2022) LiFePO4 Bataryalarda Güncel Çalışmalar Turkish Journal of Engineering Research and Education, 1(2)
  • Günaslan, S, Nalbur, B E, & Cindoruk, S S (2023) Otomotiv Endüstrisinde Döngüsel Ekonomi ve Elektrikli Araçlar İçin Yaşam Döngüsü Değerlendirmesinin İncelenmesi International Journal of Advanced Natural Sciences and Engineering Researches, 7(4), 313-318
  • Hiçyılmaz, B (2022) Avrupa Birliği Kritik Hammaddeler Yasası İklim değişikliği ekonomisi çalıştayı Eskişehir
  • International Energy Agency (IEA), (2021) World energy outlook 2021 Paris, France: IEA 2023, https:// wwweiucom/
  • International Energy Agency (IEA), (2023) World energy Outlook 2023 Paris, France: IEA, 2023, https:// wwweiucom/
  • Kakışım, C, (2022) Kritik Minerallerin Türkiye’nin Enerji Dönüşümüne Etkisi: Teknoloji Bağımsızlığı Açısından Yeni Jeopolitik Tehdit Mukaddime, 13(1), 101-124
  • Karakaya, E, (2023) Net Sıfır Hedefleri Sürecinde Malzemenin Rolü: Malzeme Verimliliği, Sanayide Karbonsuzlaşma ve Döngüsel Ekonomi İlişkisi https://wwwiklimhaberorg/net-sifir-hedefleri- surecinde-malzemenin-rolu-malzeme-verimliligi-sanayide-karbonsuzlasma-ve-dongusel-ekonomi- iliskisi/, 30 Kasım 2023
  • Kumcu, S, & Özyörük, B (2023) Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 386-394.
  • Lee, J, & Zhao, F (2022) GWEC Global Wind Report 2022 Global Wind Energy Council: Brussels, Belgium
  • Martin, N., Madrid-López, C., Villalba-Méndez, G., & Talens-Peiró, L. (2022). New techniques for assessing critical raw material aspects in energy and other technologies. Environmental Science & Technology, 56(23), 17236-17245.
  • Ortega-Gras, J. J., Bueno-Delgado, M. V., Cañavate-Cruzado, G., & Garrido-Lova, J. (2021). Twin transition through the implementation of industry 4.0 technologies: Desk-research analysis and practical use cases in Europe. Sustainability, 13(24), 13601
  • Qamar, M Z, Ali, W, Qamar, M O, & Noor, M (2021) Green technology and its implications worldwide The Inquisitive Meridian, 3, 1-11
  • Palit, AK, Popovic, D, 2005 Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications Springer-Verlag
  • Polat, E. G. (2023). Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects. International Scientific and Vocational Studies Journal, 7(2), 176-186.
  • Polat, E. G., Yücesan, M., ve Gül, M. (2023). A Comparative Framework For Criticality Assessment of Strategic Raw Materials in Turkey. Resources Policy, 82, 103511.
  • Rabbani, M. B. A., Musarat, M. A., Alaloul, W. S., Rabbani, M. S., Maqsoom, A., Ayub, S., ... & Altaf, M. (2021). A comparison between seasonal autoregressive integrated moving average (SARIMA) and exponential smoothing (ES) based on time series model for forecasting road accidents. Arabian Journal for Science and Engineering, 46(11), 11113-11138.
  • Swari, M. H. P., Qusyairi, M., Mandyartha, E. P., & Wahanani, H. E. (2021, May). Business Intelligence System using Simple Moving Average Method (Case Study: Sales Medical Equipment at PT. Semangat Sejahtera Bersama). In Journal of Physics: Conference Series (Vol. 1899, No. 1, p. 012121). IOP Publishing.
  • Szanyi, J., Rybach, L., & Abdulhaq, H. A. (2023). Geothermal Energy and Its Potential for Critical Metal Extraction—A Review. Energies, 16(20), 7168.
  • TC Sanayi ve Teknoloji Bakanlığı, 2023 Sanayi ve Strateji Teknolojisi (18092019), 01122023
  • Tercero, L A, (2019) Report on the future use of critical raw materials SCRREEN project, Deliverable D, 2 Ueberschaar, M., Otto, S. J., & Rotter, V. S. (2017). Challenges for critical raw material recovery from WEEE–The case study of gallium. Waste Management, 60, 534-545.
  • Ujaczki, É, Feigl, V, Molnár, M, Cusack, P, Curtin, T, Courtney, R, & Lenz, M (2018) Re-using bauxite residues: benefits beyond (critical raw) material recovery Journal of Chemical Technology & Biotechnology, 93(9), 2498-2510
  • Veral, E S, & Yiğitbaşıoğlu, H (2018) Avrupa Birliği atık politikasında atık yönetiminden kaynak yönetimi yaklaşımına geçiş yönelimleri ve döngüsel ekonomi modeli Ankara Üniversitesi Çevrebilimleri Dergisi, 6(1), 1-19
  • Wentker, M, Greenwood, M, Asaba, M C, & Leker, J (2019) A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies Journal of Energy Storage, 26, 101022
  • YALÇIN, A Z (2010) Sürdürülebilir kalkinma için düşük karbon ekonomisinin önemi ve türkiye için bir değerlendirme balıkesir üniversitesi sosyal bilimler enstitüsü dergisi, 13(24), 186-203 URL-1, 2023 wwwcrmallianceeu/ Critical raw materials 29 Ekim 2023
  • URL-2, 2023 https://bilimgenctubitakgovtr Tekrar şarj edilebilen bataryaların kritik lityum yerli olarak üretildi, 04 Ekim 2023
  • URL-1, 2023 https://wwwmfagovtr/paris-anlasmasitrmfa 1 Aralık 2023
  • URL-2, 2023 Republic of Turkey Intended Nationally Determined Contribution, 2015, web sayfası:https:// www4unfcccint/sites/submissions/INDC/Published%20Documents/Turkey/1/The_INDC_of_ TURKEY_v151930pdf 1 Aralık 2023
  • URL-3, 2023 https://wwwphilipscomtr/c-e/philips-yesil-urunlerhtml 28 Eylül 2023
  • URL-4, 2023 wwwsiemens-energycom Sustainability Report 2023, 1 Aralık 2023

İKİZ DÖNÜŞÜM KAPSAMINDA KRİTİK HAMMADDE ve TEKNOLOJİLERİNİN ZAMAN SERİLERİ ANALİZİ

Yıl 2024, , 519 - 539, 06.12.2024
https://doi.org/10.54452/jrb.1491337

Öz

Kritik hammaddeler, sürdürülebilir ekonomi için oldukça önemli ve tedarikleriyle bağlantılı olarak yüksek risk taşıyan hammaddelerdir. Yeşil dönüşüm ve teknolojinin dönüşümünü birleştiren ikiz dönüşümde kullanılan teknolojilerde kritik hammaddelerin kullanımı, bu hammaddelerin önemini ve arz riskini arttırmaktadır. Bu kapsamda, ülkede bu dönüşüme zemin hazırlayan teknolojilerin, uygulamaların ve politikaların incelenmesi ve zaman serileri analiziyle incelenmesi amaçlanmaktadır. Yeşil dönüşüm için ülkemizde önemli potansiyeli bulunan ve kritik hammaddelerin kullanıldığı çoğu teknolojinin de kaynağı olan güneş, rüzgâr, hidrolik, jeotermal, termik enerjinin geçmiş verilerinin analizi ve gelecek projeksiyonu sunulmaktadır. Çalışmada kullanılan zaman serileri analizi yöntemleri, basit hareketli ortalama, ağırlıklı hareketli ortalama ve üstel hareketli ortalama yöntemleridir. Üstel hareketli ortalama, güncel verilere daha fazla ağırlık verdiği için, tahmin başarısı ve hata düzeyleri konusunda daha olumlu sonuçlar vermektedir. Böylelikle, her enerji kaynağının gelecek trendleri, bu enerji kaynaklarıyla bağlantılı teknolojilerde kullanılan hammaddelerin talep düzeyi ve bu hammaddelerin kritikliğini de ortaya koyacaktır.

Kaynakça

  • Akyol, M, & Mete, E (2021) Teknoloji yoğunluklarına göre dış ticaretin ekonomik büyüme üzerine etkisi: Türkiye örneği Maliye Dergisi, 180, 208-232.
  • Aglund, S, & Benson, J (2022) Identifying Risks in the Supply Chain of Materials at Volvo Cars A Concept Modelling of Environmental, Social, and Technical Risks
  • Arnold, M G, & Hockerts, K (2011) The greening dutchman: Philips’ process of green flagging to drive sustainable innovations Business Strategy and the Environment, 20(6), 394-407
  • Aydın, S G, & Aydoğdu, G (2022) Makine öğrenmesi algoritmaları kullanılarak Türkiye ve AB ülkelerinin CO2 emisyonlarının tahmini Avrupa Bilim ve Teknoloji Dergisi, (37), 42-46
  • Buchert, M, Manhart, A, Bleher, D, & Pingel, D (2012) Recycling critical raw materials from waste electronic equipment Freiburg: Öko-Institut eV, 49(0), 30-40
  • Brown, R.G., 1959. Statistical forecasting for inventory control. McGraw/Hill
  • Cozzi, L, Gould, T, Bouckart, S, Crow, D, Kim, T Y, McGlade, C, & Wetzel, D (2020) World energy outlook 2020 International Energy Agency: Paris, France, 1-461
  • Cristóbal, J., Jubayed, M., Wulff, N., & Schebek, L. (2020). Life cycle losses of critical raw materials from solar and wind energy technologies and their role in the future material availability. Resources, Conservation and Recycling, 161, 104916.
  • Cusack, P. B., Courtney, R., Healy, M. G., O’Donoghue, L. M., & Ujaczki, É. (2019). An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period. Journal of Cleaner Production, 208, 393-401.
  • David, M., & Koch, F. (2019). “Smart is not smart enough!” Anticipating critical raw material use in smart city concepts: the example of smart grids. Sustainability, 11(16), 4422.
  • Demirtaş, M, Turan, A, Car, E, & Yücel, O (2017) Kritik Hammaddeler Metalurji ve Malzeme Mühendisleri Odası Dergisi, 183, 28-33
  • Espinoza, L. T., Loibl, A. N. T. O. N. I. A., Langkau, S. A. B. I. N. E., De Koning, A. R. J. A. N., Van Der Voet, E. S. T. E. R., & Michaux, S. (2021). Report on the future use of critical raw materials. Accessed the 5th of March.
  • Erdmann, L, & Graedel, T E (2011) Criticality of non-fuel minerals: a review of major approaches and analyses Environmental science & technology, 45(18), 7620-7630
  • European Commission (EC), Study on the Critical Raw Materials for the EU Final Report 2020
  • Ferro, P., Bonollo, F., & Cruz, S. A. (2021). Product design from an environmental and critical raw materials perspective. International Journal of Sustainable Engineering, 14(1), 1-11.
  • Gao, D, Kinouchi, Y, Ito K, and Zhao, X, 2003 Time Series Identifying and Modeling with Neural Networks GWEC, “Global wind report 2021” Global Wind Energy Council (GWEC), https://gwecnet/global-wind- report-2021/ , 25 Kasım 2023
  • Göçmen-Polat, E. (2024). Assessment of Critical Raw Materials by Addressing Sustainable Development Goals Using Fuzzy MCDM Approach. In Harmonizing Global Efforts in Meeting Sustainable Development Goals (pp. 164-181). IGI Global.
  • Gültek, E, & Altın, S (2022) LiFePO4 Bataryalarda Güncel Çalışmalar Turkish Journal of Engineering Research and Education, 1(2)
  • Günaslan, S, Nalbur, B E, & Cindoruk, S S (2023) Otomotiv Endüstrisinde Döngüsel Ekonomi ve Elektrikli Araçlar İçin Yaşam Döngüsü Değerlendirmesinin İncelenmesi International Journal of Advanced Natural Sciences and Engineering Researches, 7(4), 313-318
  • Hiçyılmaz, B (2022) Avrupa Birliği Kritik Hammaddeler Yasası İklim değişikliği ekonomisi çalıştayı Eskişehir
  • International Energy Agency (IEA), (2021) World energy outlook 2021 Paris, France: IEA 2023, https:// wwweiucom/
  • International Energy Agency (IEA), (2023) World energy Outlook 2023 Paris, France: IEA, 2023, https:// wwweiucom/
  • Kakışım, C, (2022) Kritik Minerallerin Türkiye’nin Enerji Dönüşümüne Etkisi: Teknoloji Bağımsızlığı Açısından Yeni Jeopolitik Tehdit Mukaddime, 13(1), 101-124
  • Karakaya, E, (2023) Net Sıfır Hedefleri Sürecinde Malzemenin Rolü: Malzeme Verimliliği, Sanayide Karbonsuzlaşma ve Döngüsel Ekonomi İlişkisi https://wwwiklimhaberorg/net-sifir-hedefleri- surecinde-malzemenin-rolu-malzeme-verimliligi-sanayide-karbonsuzlasma-ve-dongusel-ekonomi- iliskisi/, 30 Kasım 2023
  • Kumcu, S, & Özyörük, B (2023) Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 386-394.
  • Lee, J, & Zhao, F (2022) GWEC Global Wind Report 2022 Global Wind Energy Council: Brussels, Belgium
  • Martin, N., Madrid-López, C., Villalba-Méndez, G., & Talens-Peiró, L. (2022). New techniques for assessing critical raw material aspects in energy and other technologies. Environmental Science & Technology, 56(23), 17236-17245.
  • Ortega-Gras, J. J., Bueno-Delgado, M. V., Cañavate-Cruzado, G., & Garrido-Lova, J. (2021). Twin transition through the implementation of industry 4.0 technologies: Desk-research analysis and practical use cases in Europe. Sustainability, 13(24), 13601
  • Qamar, M Z, Ali, W, Qamar, M O, & Noor, M (2021) Green technology and its implications worldwide The Inquisitive Meridian, 3, 1-11
  • Palit, AK, Popovic, D, 2005 Computational Intelligence in Time Series Forecasting: Theory and Engineering Applications Springer-Verlag
  • Polat, E. G. (2023). Assessing the Roles of Raw Materials in Sustainable Development Goals: Current Situation and Future Prospects. International Scientific and Vocational Studies Journal, 7(2), 176-186.
  • Polat, E. G., Yücesan, M., ve Gül, M. (2023). A Comparative Framework For Criticality Assessment of Strategic Raw Materials in Turkey. Resources Policy, 82, 103511.
  • Rabbani, M. B. A., Musarat, M. A., Alaloul, W. S., Rabbani, M. S., Maqsoom, A., Ayub, S., ... & Altaf, M. (2021). A comparison between seasonal autoregressive integrated moving average (SARIMA) and exponential smoothing (ES) based on time series model for forecasting road accidents. Arabian Journal for Science and Engineering, 46(11), 11113-11138.
  • Swari, M. H. P., Qusyairi, M., Mandyartha, E. P., & Wahanani, H. E. (2021, May). Business Intelligence System using Simple Moving Average Method (Case Study: Sales Medical Equipment at PT. Semangat Sejahtera Bersama). In Journal of Physics: Conference Series (Vol. 1899, No. 1, p. 012121). IOP Publishing.
  • Szanyi, J., Rybach, L., & Abdulhaq, H. A. (2023). Geothermal Energy and Its Potential for Critical Metal Extraction—A Review. Energies, 16(20), 7168.
  • TC Sanayi ve Teknoloji Bakanlığı, 2023 Sanayi ve Strateji Teknolojisi (18092019), 01122023
  • Tercero, L A, (2019) Report on the future use of critical raw materials SCRREEN project, Deliverable D, 2 Ueberschaar, M., Otto, S. J., & Rotter, V. S. (2017). Challenges for critical raw material recovery from WEEE–The case study of gallium. Waste Management, 60, 534-545.
  • Ujaczki, É, Feigl, V, Molnár, M, Cusack, P, Curtin, T, Courtney, R, & Lenz, M (2018) Re-using bauxite residues: benefits beyond (critical raw) material recovery Journal of Chemical Technology & Biotechnology, 93(9), 2498-2510
  • Veral, E S, & Yiğitbaşıoğlu, H (2018) Avrupa Birliği atık politikasında atık yönetiminden kaynak yönetimi yaklaşımına geçiş yönelimleri ve döngüsel ekonomi modeli Ankara Üniversitesi Çevrebilimleri Dergisi, 6(1), 1-19
  • Wentker, M, Greenwood, M, Asaba, M C, & Leker, J (2019) A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies Journal of Energy Storage, 26, 101022
  • YALÇIN, A Z (2010) Sürdürülebilir kalkinma için düşük karbon ekonomisinin önemi ve türkiye için bir değerlendirme balıkesir üniversitesi sosyal bilimler enstitüsü dergisi, 13(24), 186-203 URL-1, 2023 wwwcrmallianceeu/ Critical raw materials 29 Ekim 2023
  • URL-2, 2023 https://bilimgenctubitakgovtr Tekrar şarj edilebilen bataryaların kritik lityum yerli olarak üretildi, 04 Ekim 2023
  • URL-1, 2023 https://wwwmfagovtr/paris-anlasmasitrmfa 1 Aralık 2023
  • URL-2, 2023 Republic of Turkey Intended Nationally Determined Contribution, 2015, web sayfası:https:// www4unfcccint/sites/submissions/INDC/Published%20Documents/Turkey/1/The_INDC_of_ TURKEY_v151930pdf 1 Aralık 2023
  • URL-3, 2023 https://wwwphilipscomtr/c-e/philips-yesil-urunlerhtml 28 Eylül 2023
  • URL-4, 2023 wwwsiemens-energycom Sustainability Report 2023, 1 Aralık 2023
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İş Sistemleri (Diğer)
Bölüm Makaleler
Yazarlar

Halise Miray Say 0000-0002-2482-2725

Mahir Öner 0009-0006-4883-2860

Elifcan Göçmen Polat 0000-0002-0316-281X

Yayımlanma Tarihi 6 Aralık 2024
Gönderilme Tarihi 28 Mayıs 2024
Kabul Tarihi 8 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Say, H. M., Öner, M., & Göçmen Polat, E. (2024). İKİZ DÖNÜŞÜM KAPSAMINDA KRİTİK HAMMADDE ve TEKNOLOJİLERİNİN ZAMAN SERİLERİ ANALİZİ. Journal of Research in Business, 9(2), 519-539. https://doi.org/10.54452/jrb.1491337