Araştırma Makalesi
BibTex RIS Kaynak Göster

Development and Performance Assessment of a Textile-Based Wearable Antenna for WBAN Applications

Yıl 2025, Sayı: 12, 100 - 105, 31.12.2025
https://doi.org/10.52693/jsas.1839372

Öz

Abstract: This study presents a compact wearable antenna intended for wireless body area network (WBAN) applications. The antenna is realized on a denim textile substrate with overall dimensions of 46 × 55 × 1 mm³, and its performance is evaluated using a commercial full-wave EM solver. Under the S11 < −10 dB criterion, the simulated impedance bandwidths extend from 2.05 to 4.67 GHz and from 5.78 to 8.94 GHz. The design resonates at 2.45 GHz and 7.88 GHz, delivering realized gains of 2.43 dBi and 3.60 dBi at the two bands. The total efficiencies reach 97.62% at 2.45 GHz and 90.0% at 7.88 GHz. These outcomes verify that the suggested structure is a strong candidate for practical wearable implementations.

Kaynakça

  • [1] K. Zhang, G. A. E. Vandenbosch, and S. Yan, “A Novel Design Approach for Compact Wearable Antennas Based on Metasurfaces,” IEEE Trans Biomed Circuits Syst, vol. 14, no. 4, pp. 918–927, Aug. 2020, doi: 10.1109/TBCAS.2020.3010259.
  • [2] V. K. Singh, N. Bangari, Z. Ali, A. Vyas, R. K. Verma, and A. Saxena, “Parachute shape ultra-wideband wearable antenna for remote health care monitoring,” International Journal of Communication Systems, vol. 36, no. 10, p. e5488, Jul. 2023, doi: 10.1002/DAC.5488.
  • [3] H. Lee, J. Tak, and J. Choi, “Wearable Antenna Integrated into Military Berets for Indoor/Outdoor Positioning System,” IEEE Antennas Wirel Propag Lett, vol. 16, pp. 1919–1922, 2017, doi: 10.1109/LAWP.2017.2688400.
  • [4] E. Celenk and N. T. Tokan, “All-Textile On-Body Antenna for Military Applications,” IEEE Antennas Wirel Propag Lett, vol. 21, no. 5, pp. 1065–1069, May 2022, doi: 10.1109/LAWP.2022.3159301.
  • [5] Z. Zhao et al., “A Miniaturized Wearable Antenna With Five Band-Notched Characteristics for Medical Applications,” IEEE Antennas Wirel Propag Lett, vol. 22, no. 6, pp. 1246–1250, Jun. 2023, doi: 10.1109/LAWP.2023.3237714.
  • [6] S. Coyle, D. Morris, K.-T. Lau, D. Diamond, and N. Moyna, “Textile-Based Wearable Sensors for Assisting Sports Performance,” Berkeley, CA, USA: Institute of Electrical and Electronics Engineers (IEEE), Sep. 2009, pp. 307–311. doi: 10.1109/BSN.2009.57.
  • [7] W. Wang, X. W. Xuan, P. Pan, Y. J. Hua, H. B. Zhao, and K. Li, “A low-profile dual-band omnidirectional Alford antenna for wearable WBAN applications,” Microw Opt Technol Lett, vol. 62, no. 5, pp. 2040–2046, May 2020, doi: 10.1002/MOP.32270.
  • [8] H. Li, J. Du, X. X. Yang, and S. Gao, “Low-Profile All-Textile Multiband Microstrip Circular Patch Antenna for WBAN Applications,” IEEE Antennas Wirel Propag Lett, vol. 21, no. 4, pp. 779–783, Apr. 2022, doi: 10.1109/LAWP.2022.3146435.
  • [9] S. Hassan and S. H. Shehab, “Evaluation of an Ultra Wideband (UWB) textile antenna in the vicinity of human body model for WBAN applications,” 2015 IEEE International WIE Conference on Electrical and Computer Engineering, WIECON-ECE 2015, pp. 195–198, Mar. 2016, doi: 10.1109/WIECON-ECE.2015.7443895.
  • [10] S. Yan, L. A. Y. Poffelie, P. J. Soh, X. Zheng, and G. A. E. Vandenbosch, “On-body performance of wearable UWB textile antenna with full ground plane,” 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, May 2016, doi: 10.1109/EUCAP.2016.7481477.
  • [11] S. Mohandoss, S. K. Palaniswamy, R. R. Thipparaju, M. Kanagasabai, B. R. Bobbili Naga, and S. Kumar, “On the bending and time domain analysis of compact wideband flexible monopole antennas,” AEU - International Journal of Electronics and Communications, vol. 101, pp. 168–181, Mar. 2019, doi: 10.1016/J.AEUE.2019.01.015.
  • [12] A. Y. I. Ashyap et al., “Compact and Low-Profile Textile EBG-Based Antenna for Wearable Medical Applications,” IEEE Antennas Wirel Propag Lett, vol. 16, pp. 2550–2553, Jul. 2017, doi: 10.1109/LAWP.2017.2732355.
  • [13] L. J. Xu, H. Wang, Y. Chang, and Y. Bo, “A flexible UWB inverted-F antenna for wearable application,” Microw Opt Technol Lett, vol. 59, no. 10, pp. 2514–2518, Oct. 2017, doi: 10.1002/MOP.30772.
  • [14] G. P. Gao, C. Yang, B. Hu, R. F. Zhang, and S. F. Wang, “A Wearable PIFA With an All-Textile Metasurface for 5 GHz WBAN Applications,” IEEE Antennas Wirel Propag Lett, vol. 18, no. 2, pp. 288–292, Feb. 2019, doi: 10.1109/LAWP.2018.2889117.
  • [15] G. Srivastava, A. Mohan, and A. Chakrabarty, “Compact Reconfigurable UWB Slot Antenna for Cognitive Radio Applications,” IEEE Antennas Wirel Propag Lett, vol. 16, pp. 1139–1142, 2017, doi: 10.1109/LAWP.2016.2624736.
  • [16] Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans Antennas Propag, vol. 62, no. 8, pp. 4021–4030, 2014, doi: 10.1109/TAP.2014.2327650.
  • [17] Y. S. Chen and T. Y. Ku, “A Low-Profile Wearable Antenna Using a Miniature High Impedance Surface for Smartwatch Applications,” IEEE Antennas Wirel Propag Lett, vol. 15, pp. 1144–1147, 2016, doi: 10.1109/LAWP.2015.2496366.
  • [18] A. Y. I. Ashyap et al., “Fully Fabric High Impedance Surface-Enabled Antenna for Wearable Medical Applications,” IEEE Access, vol. 9, pp. 6948–6960, 2021, doi: 10.1109/ACCESS.2021.3049491.
  • [19] Y. Hong, J. Tak, and J. Choi, “An All-Textile SIW Cavity-Backed Circular Ring-Slot Antenna for WBAN Applications,” IEEE Antennas Wirel Propag Lett, vol. 15, pp. 1995–1999, 2016, doi: 10.1109/LAWP.2016.2549578.
  • [20] R. Moro, S. Agneessens, H. Rogier, A. Dierck, and M. Bozzi, “Textile microwave components in substrate integrated waveguide technology,” IEEE Trans Microw Theory Tech, vol. 63, no. 2, pp. 422–432, Feb. 2015, doi: 10.1109/TMTT.2014.2387272.
  • [21] R. Salvado, C. Loss, Gon, and P. Pinho, “Textile Materials for the Design of Wearable Antennas: A Survey,” Sensors 2012, Vol. 12, Pages 15841-15857, vol. 12, no. 11, pp. 15841–15857, Nov. 2012, doi: 10.3390/S121115841.
  • [22] S. Amit, V. Talasila, and P. Shastry, “A semi-circular slot textile antenna for ultrawideband applications,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Proceedings, pp. 249–250, Jul. 2019, doi: 10.1109/APUSNCURSINRSM.2019.8889148.
  • [23] H. Kisioglu, “Design, Performance, and SAR Analysis of a Low-Profile Metamaterial-Integrated UWB Antenna for Wireless Body Area Networks,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 38, no. 6, p. e70133, 2025, doi: https://doi.org/10.1002/jnm.70133.
  • [24] S. Singh and S. Verma, “Printed compact asymmetric dual L-strip fed split-ring shaped EBG-based textile antenna for WBAN applications,” Microw Opt Technol Lett, vol. 62, no. 12, pp. 3897–3904, Dec. 2020, doi: 10.1002/MOP.32512.
  • [25] H. Yalduz, B. Koç, L. Kuzu, and M. Turkmen, “An ultra-wide band low-SAR flexible metasurface-enabled antenna for WBAN applications,” Appl Phys A Mater Sci Process, vol. 125, no. 9, pp. 1–11, Sep. 2019, doi: 10.1007/S00339-019-2902-4/TABLES/3.
  • [26] A. Yadav, V. K. Singh, A. K. Bhoi, G. Marques, B. Garcia-Zapirain, and I. de la T. Díez, “Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems,” Micromachines (Basel), vol. 11, no. 6, Jun. 2020, doi: 10.3390/MI11060558.
  • [27] H. Kişioğlu, “Design and Performance Analysis of Flexible Wearable Antenna for Wireless Body Area Network (WBAN) Applications,” Electronic Letters on Science and Engineering, vol. 21, no. 2, pp. 25–34, 2025.
  • [28] H. Yalduz, T. E. Tabaru, V. T. Kilic, and M. Turkmen, “Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications,” AEU - International Journal of Electronics and Communications, vol. 126, p. 153465, Nov. 2020, doi: 10.1016/J.AEUE.2020.153465.
  • [29] H. Kişioğlu, “Design and Performance Analysis of Multiband Microstrip Antenna for Wireless Communication Applications,” International Journal of Engineering Research and Development, vol. 17, no. 1, pp. 44–54, 2025, doi: 10.29137/umagd.1439924.
  • [30] H. Kisioglu, “Multiband antenna design with a defected ground structure for 5G and X-band applications,” AEU - International Journal of Electronics and Communications, vol. 190, p. 155651, Feb. 2025, doi: 10.1016/J.AEUE.2024.155651.
  • [31] M. M. H. Mahfuz et al., “Wearable Textile Patch Antenna: Challenges and Future Directions,” IEEE Access, vol. 10, pp. 38406–38427, 2022, doi: 10.1109/ACCESS.2022.3161564.
  • [32] CST, “https://www.3ds.com/products-services/simulia/products/cst-studio-suite/solvers/ Accessed: September 2025.”

WBAN Uygulamaları için Tekstil Tabanlı Giyilebilir Bir Antenin Geliştirilmesi ve Performans Değerlendirmesi

Yıl 2025, Sayı: 12, 100 - 105, 31.12.2025
https://doi.org/10.52693/jsas.1839372

Öz

Bu çalışma, Kablosuz Vücut Alan Ağları (WBAN) uygulamaları için tasarlanmış kompakt bir giyilebilir anteni sunmaktadır. Anten, 46 × 55 × 1 mm³ genel boyutlara sahip denim tekstil bir altlık üzerinde gerçekleştirilmiş olup, performansı ticari bir tam dalga elektromanyetik (EM) çözücü kullanılarak değerlendirilmiştir. S11 < −10 dB kriteri altında, benzetim sonuçlarına göre empedans bant genişlikleri 2.05–4.67 GHz ve 5.78–8.94 GHz aralıklarını kapsamaktadır. Tasarım, 2.45 GHz ve 7.88 GHz frekanslarında rezonans göstermekte olup, bu bantlarda sırasıyla 2.43 dBi ve 3.60 dBi gerçekleşen kazanç değerleri elde edilmiştir. Toplam verimlilik değerleri ise 2.45 GHz’te %97.62 ve 7.88 GHz’te %90.0 seviyelerine ulaşmaktadır. Elde edilen bu sonuçlar, önerilen yapının pratik giyilebilir uygulamalar için güçlü bir aday olduğunu doğrulamaktadır.

Kaynakça

  • [1] K. Zhang, G. A. E. Vandenbosch, and S. Yan, “A Novel Design Approach for Compact Wearable Antennas Based on Metasurfaces,” IEEE Trans Biomed Circuits Syst, vol. 14, no. 4, pp. 918–927, Aug. 2020, doi: 10.1109/TBCAS.2020.3010259.
  • [2] V. K. Singh, N. Bangari, Z. Ali, A. Vyas, R. K. Verma, and A. Saxena, “Parachute shape ultra-wideband wearable antenna for remote health care monitoring,” International Journal of Communication Systems, vol. 36, no. 10, p. e5488, Jul. 2023, doi: 10.1002/DAC.5488.
  • [3] H. Lee, J. Tak, and J. Choi, “Wearable Antenna Integrated into Military Berets for Indoor/Outdoor Positioning System,” IEEE Antennas Wirel Propag Lett, vol. 16, pp. 1919–1922, 2017, doi: 10.1109/LAWP.2017.2688400.
  • [4] E. Celenk and N. T. Tokan, “All-Textile On-Body Antenna for Military Applications,” IEEE Antennas Wirel Propag Lett, vol. 21, no. 5, pp. 1065–1069, May 2022, doi: 10.1109/LAWP.2022.3159301.
  • [5] Z. Zhao et al., “A Miniaturized Wearable Antenna With Five Band-Notched Characteristics for Medical Applications,” IEEE Antennas Wirel Propag Lett, vol. 22, no. 6, pp. 1246–1250, Jun. 2023, doi: 10.1109/LAWP.2023.3237714.
  • [6] S. Coyle, D. Morris, K.-T. Lau, D. Diamond, and N. Moyna, “Textile-Based Wearable Sensors for Assisting Sports Performance,” Berkeley, CA, USA: Institute of Electrical and Electronics Engineers (IEEE), Sep. 2009, pp. 307–311. doi: 10.1109/BSN.2009.57.
  • [7] W. Wang, X. W. Xuan, P. Pan, Y. J. Hua, H. B. Zhao, and K. Li, “A low-profile dual-band omnidirectional Alford antenna for wearable WBAN applications,” Microw Opt Technol Lett, vol. 62, no. 5, pp. 2040–2046, May 2020, doi: 10.1002/MOP.32270.
  • [8] H. Li, J. Du, X. X. Yang, and S. Gao, “Low-Profile All-Textile Multiband Microstrip Circular Patch Antenna for WBAN Applications,” IEEE Antennas Wirel Propag Lett, vol. 21, no. 4, pp. 779–783, Apr. 2022, doi: 10.1109/LAWP.2022.3146435.
  • [9] S. Hassan and S. H. Shehab, “Evaluation of an Ultra Wideband (UWB) textile antenna in the vicinity of human body model for WBAN applications,” 2015 IEEE International WIE Conference on Electrical and Computer Engineering, WIECON-ECE 2015, pp. 195–198, Mar. 2016, doi: 10.1109/WIECON-ECE.2015.7443895.
  • [10] S. Yan, L. A. Y. Poffelie, P. J. Soh, X. Zheng, and G. A. E. Vandenbosch, “On-body performance of wearable UWB textile antenna with full ground plane,” 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, May 2016, doi: 10.1109/EUCAP.2016.7481477.
  • [11] S. Mohandoss, S. K. Palaniswamy, R. R. Thipparaju, M. Kanagasabai, B. R. Bobbili Naga, and S. Kumar, “On the bending and time domain analysis of compact wideband flexible monopole antennas,” AEU - International Journal of Electronics and Communications, vol. 101, pp. 168–181, Mar. 2019, doi: 10.1016/J.AEUE.2019.01.015.
  • [12] A. Y. I. Ashyap et al., “Compact and Low-Profile Textile EBG-Based Antenna for Wearable Medical Applications,” IEEE Antennas Wirel Propag Lett, vol. 16, pp. 2550–2553, Jul. 2017, doi: 10.1109/LAWP.2017.2732355.
  • [13] L. J. Xu, H. Wang, Y. Chang, and Y. Bo, “A flexible UWB inverted-F antenna for wearable application,” Microw Opt Technol Lett, vol. 59, no. 10, pp. 2514–2518, Oct. 2017, doi: 10.1002/MOP.30772.
  • [14] G. P. Gao, C. Yang, B. Hu, R. F. Zhang, and S. F. Wang, “A Wearable PIFA With an All-Textile Metasurface for 5 GHz WBAN Applications,” IEEE Antennas Wirel Propag Lett, vol. 18, no. 2, pp. 288–292, Feb. 2019, doi: 10.1109/LAWP.2018.2889117.
  • [15] G. Srivastava, A. Mohan, and A. Chakrabarty, “Compact Reconfigurable UWB Slot Antenna for Cognitive Radio Applications,” IEEE Antennas Wirel Propag Lett, vol. 16, pp. 1139–1142, 2017, doi: 10.1109/LAWP.2016.2624736.
  • [16] Z. H. Jiang, D. E. Brocker, P. E. Sieber, and D. H. Werner, “A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices,” IEEE Trans Antennas Propag, vol. 62, no. 8, pp. 4021–4030, 2014, doi: 10.1109/TAP.2014.2327650.
  • [17] Y. S. Chen and T. Y. Ku, “A Low-Profile Wearable Antenna Using a Miniature High Impedance Surface for Smartwatch Applications,” IEEE Antennas Wirel Propag Lett, vol. 15, pp. 1144–1147, 2016, doi: 10.1109/LAWP.2015.2496366.
  • [18] A. Y. I. Ashyap et al., “Fully Fabric High Impedance Surface-Enabled Antenna for Wearable Medical Applications,” IEEE Access, vol. 9, pp. 6948–6960, 2021, doi: 10.1109/ACCESS.2021.3049491.
  • [19] Y. Hong, J. Tak, and J. Choi, “An All-Textile SIW Cavity-Backed Circular Ring-Slot Antenna for WBAN Applications,” IEEE Antennas Wirel Propag Lett, vol. 15, pp. 1995–1999, 2016, doi: 10.1109/LAWP.2016.2549578.
  • [20] R. Moro, S. Agneessens, H. Rogier, A. Dierck, and M. Bozzi, “Textile microwave components in substrate integrated waveguide technology,” IEEE Trans Microw Theory Tech, vol. 63, no. 2, pp. 422–432, Feb. 2015, doi: 10.1109/TMTT.2014.2387272.
  • [21] R. Salvado, C. Loss, Gon, and P. Pinho, “Textile Materials for the Design of Wearable Antennas: A Survey,” Sensors 2012, Vol. 12, Pages 15841-15857, vol. 12, no. 11, pp. 15841–15857, Nov. 2012, doi: 10.3390/S121115841.
  • [22] S. Amit, V. Talasila, and P. Shastry, “A semi-circular slot textile antenna for ultrawideband applications,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Proceedings, pp. 249–250, Jul. 2019, doi: 10.1109/APUSNCURSINRSM.2019.8889148.
  • [23] H. Kisioglu, “Design, Performance, and SAR Analysis of a Low-Profile Metamaterial-Integrated UWB Antenna for Wireless Body Area Networks,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 38, no. 6, p. e70133, 2025, doi: https://doi.org/10.1002/jnm.70133.
  • [24] S. Singh and S. Verma, “Printed compact asymmetric dual L-strip fed split-ring shaped EBG-based textile antenna for WBAN applications,” Microw Opt Technol Lett, vol. 62, no. 12, pp. 3897–3904, Dec. 2020, doi: 10.1002/MOP.32512.
  • [25] H. Yalduz, B. Koç, L. Kuzu, and M. Turkmen, “An ultra-wide band low-SAR flexible metasurface-enabled antenna for WBAN applications,” Appl Phys A Mater Sci Process, vol. 125, no. 9, pp. 1–11, Sep. 2019, doi: 10.1007/S00339-019-2902-4/TABLES/3.
  • [26] A. Yadav, V. K. Singh, A. K. Bhoi, G. Marques, B. Garcia-Zapirain, and I. de la T. Díez, “Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems,” Micromachines (Basel), vol. 11, no. 6, Jun. 2020, doi: 10.3390/MI11060558.
  • [27] H. Kişioğlu, “Design and Performance Analysis of Flexible Wearable Antenna for Wireless Body Area Network (WBAN) Applications,” Electronic Letters on Science and Engineering, vol. 21, no. 2, pp. 25–34, 2025.
  • [28] H. Yalduz, T. E. Tabaru, V. T. Kilic, and M. Turkmen, “Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications,” AEU - International Journal of Electronics and Communications, vol. 126, p. 153465, Nov. 2020, doi: 10.1016/J.AEUE.2020.153465.
  • [29] H. Kişioğlu, “Design and Performance Analysis of Multiband Microstrip Antenna for Wireless Communication Applications,” International Journal of Engineering Research and Development, vol. 17, no. 1, pp. 44–54, 2025, doi: 10.29137/umagd.1439924.
  • [30] H. Kisioglu, “Multiband antenna design with a defected ground structure for 5G and X-band applications,” AEU - International Journal of Electronics and Communications, vol. 190, p. 155651, Feb. 2025, doi: 10.1016/J.AEUE.2024.155651.
  • [31] M. M. H. Mahfuz et al., “Wearable Textile Patch Antenna: Challenges and Future Directions,” IEEE Access, vol. 10, pp. 38406–38427, 2022, doi: 10.1109/ACCESS.2022.3161564.
  • [32] CST, “https://www.3ds.com/products-services/simulia/products/cst-studio-suite/solvers/ Accessed: September 2025.”
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik, Sensörler ve Dijital Donanım (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hakan Kişioğlu 0000-0002-5913-9758

Gönderilme Tarihi 9 Aralık 2025
Kabul Tarihi 29 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 12

Kaynak Göster

IEEE H. Kişioğlu, “Development and Performance Assessment of a Textile-Based Wearable Antenna for WBAN Applications”, JSAS, sy. 12, ss. 100–105, Aralık2025, doi: 10.52693/jsas.1839372.