Araştırma Makalesi
BibTex RIS Kaynak Göster

Machine Learning-Based Wind Energy Forecasting Using Weather Parameters: The Example of Yalova

Yıl 2025, Sayı: 11, 40 - 49, 30.06.2025
https://doi.org/10.52693/jsas.1670486

Öz

In this study, various machine learning algorithms were evaluated for estimating wind energy production using hourly meteorological data of Yalova province in 2018. The input parameters were input parameters of weather parameters such as temperature, relative humidity, air pressure, wind direction, and wind speed. In the analysis performed on a total of 50530 data points, methods such as Gradient Boosting (GB), Random Forests (RF), k-nearest neighbor (kNN), and Stochastic gradient descent (GBD) were compared. Model performances were evaluated according to Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), MAPE, and R2 criteria. According to the results, the best-performing algorithm was RF with an MSE value of 0.039, RMSE value of 0.197, MAE value of 0.081, MAPE value of 0.377, and R² score of 0.961. On the other hand, the SGD model showed the lowest performance with an MSE value of 0.175, RMSE value of 0.418, MAE value of 0.303, MAPE value of 0.581, and R² score of 0.822. These findings show that machine learning models, supported by selecting the correct weather parameters, can provide high accuracy in estimating wind energy production and contribute to energy management policies in this direction.

Kaynakça

  • [1] N. Abas, A. Kalair, and N. Khan, “Review of fossil fuels and future energy technologies,” Futures, vol. 69, pp. 31–49, 2015.
  • [2] P. Wilkinson, K. R. Smith, M. Joffe, and A. Haines, “A global perspective on energy: health effects and injustices,” Lancet, vol. 370, no. 9591, pp. 965–978, 2007.
  • [3] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renew. Sustain. energy Rev., vol. 39, pp. 748–764, 2014.
  • [4] A. Rahman, O. Farrok, and M. M. Haque, “Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic,” Renew. Sustain. energy Rev., vol. 161, p. 112279, 2022.
  • [5] A. Atalan and Y. A. Atalan, “Nonlinear Optimization Models of Box-Behnken Experimental Design: Turbine Simulation for Wind Power Plant,” 3rd International Conference on Engineering and Applied Natural Sciences, 2023.
  • [6] A. D. Şahin, “Progress and recent trends in wind energy,” Prog. energy Combust. Sci., vol. 30, no. 5, pp. 501–543, 2004.
  • [7] E. Toklu, “Overview of potential and utilization of renewable energy sources in Turkey,” Renew. Energy, vol. 50, pp. 456–463, 2013, doi: 10.1016/j.renene.2012.06.035.
  • [8] F. Cassola and M. Burlando, “Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output,” Appl. Energy, vol. 99, pp. 154–166, 2012.
  • [9] I. Sanchez, “Short-term prediction of wind energy production,” Int. J. Forecast., vol. 22, no. 1, pp. 43–56, 2006.
  • [10] S.-Q. Dotse, I. Larbi, A. M. Limantol, and L. C. De Silva, “A review of the application of hybrid machine learning models to improve rainfall prediction,” Model. Earth Syst. Environ., vol. 10, no. 1, pp. 19–44, 2024.
  • [11] A. Alkesaiberi, F. Harrou, and Y. Sun, “Efficient wind power prediction using machine learning methods: A comparative study,” Energies, vol. 15, no. 7, p. 2327, 2022.
  • [12] D. Wang, X. Gao, K. Meng, J. Qiu, L. L. Lai, and S. Gao, “Utilisation of kinetic energy from wind turbine for grid connections: a review paper,” IET Renew. Power Gener., vol. 12, no. 6, pp. 615–624, 2018.
  • [13] J. W. Zhou, W. Zhang, X. Jiang, and E. D. Zhai, “Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method,” Renew. Energy, vol. 188, pp. 96–113, 2022.
  • [14] C.-T. Chen, R. A. Islam, and S. Priya, “Electric energy generator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 3, pp. 656–661, 2006.
  • [15] E. Serban, M. Ordonez, and C. Pondiche, “Voltage and frequency grid support strategies beyond standards,” IEEE Trans. power Electron., vol. 32, no. 1, pp. 298–309, 2016.
  • [16] J. B. Welch and A. Venkateswaran, “The dual sustainability of wind energy,” Renew. Sustain. Energy Rev., vol. 13, no. 5, pp. 1121–1126, 2009.
  • [17] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learning forecasting methods: Concerns and ways forward,” PLoS One, vol. 13, no. 3, p. e0194889, 2018.
  • [18] P. Reichert and J. Mieleitner, “Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time‐dependent parameters,” Water Resour. Res., vol. 45, no. 10, 2009.
  • [19] Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, “Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects,” Atmos. Environ., vol. 60, pp. 656–676, 2012.
  • [20] A. Atalan, “The ChatGPT application on quality management: a comprehensive review,” J. Manag. Anal., pp. 1–31, May 2025, doi: 10.1080/23270012.2025.2484225.
  • [21] S. Dewitte, J. P. Cornelis, R. Müller, and A. Munteanu, “Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction,” Remote Sens., vol. 13, no. 16, p. 3209, 2021.
  • [22] J. Devaraj, R. Madurai Elavarasan, G. M. Shafiullah, T. Jamal, and I. Khan, “A holistic review on energy forecasting using big data and deep learning models,” Int. J. energy Res., vol. 45, no. 9, pp. 13489–13530, 2021.
  • [23] Y. A. Atalan and A. Atalan, “Integration of the Machine Learning Algorithms and I-MR Statistical Process Control for Solar Energy,” Sustain., vol. 15, no. 18, Sep. 2023, doi: 10.3390/su151813782.
  • [24] E. T. Renani, M. F. M. Elias, and N. A. Rahim, “Using data-driven approach for wind power prediction: A comparative study,” Energy Convers. Manag., vol. 118, pp. 193–203, 2016.
  • [25] A. Atalan and C. Ç. Dönmez, “Dynamic Price Application to Prevent Financial Losses to Hospitals Based on Machine Learning Algorithms,” Healthcare, vol. 12, no. 13, p. 1272, Jun. 2024, doi: 10.3390/healthcare12131272.
  • [26] H. Szczepaniuk and E. K. Szczepaniuk, “Applications of artificial intelligence algorithms in the energy sector,” Energies, vol. 16, no. 1, p. 347, 2022.
  • [27] H. Demolli, A. S. Dokuz, A. Ecemis, and M. Gokcek, “Wind power forecasting based on daily wind speed data using machine learning algorithms,” Energy Convers. Manag., vol. 198, p. 111823, 2019, doi: https://doi.org/10.1016/j.enconman.2019.111823.
  • [28] P. Piotrowski, D. Baczyński, M. Kopyt, and T. Gulczyński, “Advanced ensemble methods using machine learning and deep learning for one-day-ahead forecasts of electric energy production in wind farms,” Energies, vol. 15, no. 4, p. 1252, 2022.
  • [29] L. Wang, X. Zhou, X. Zhu, Z. Dong, and W. Guo, “Estimation of biomass in wheat using random forest regression algorithm and remote sensing data,” Crop J., vol. 4, no. 3, pp. 212–219, Jun. 2016, doi: 10.1016/j.cj.2016.01.008.
  • [30] P. Moshtaghi, N. Hajialigol, and B. Rafiei, “A Comprehensive Review of Artificial Intelligence Applications in Wind Energy Power Generation,” Available SSRN 5061006, 2024.
  • [31] K. Yazıcı, “Makine öğrenmesi yöntemleri kullanılarak kısa dönem rüzgar gücü tahmini.” Sakarya Üniversitesi, 2021.
  • [32] Y. Qin et al., “Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal,” Appl. Energy, vol. 236, pp. 262–272, 2019.
  • [33] U. Singh, M. Rizwan, M. Alaraj, and I. Alsaidan, “A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments,” Energies, vol. 14, no. 16, p. 5196, 2021.
  • [34] B. Erisen, “Wind Turbine Scada Dataset 2018 Scada Data of a Wind Turbine in Turkey,” Kaggle, 2018. https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
  • [35] Open-meteo, “Accurate Weather Forecasts for Any Location,” 2025. https://archive-api.open-meteo.com/v1/archive
  • [36] A. Atalan, “Forecasting drinking milk price based on economic, social, and environmental factors using machine learning algorithms,” Agribusiness, vol. 39, no. 1, pp. 214–241, Jan. 2023, doi: 10.1002/agr.21773.
  • [37] D. Thakur and S. Biswas, “Permutation importance based modified guided regularized random forest in human activity recognition with smartphone,” Eng. Appl. Artif. Intell., vol. 129, p. 107681, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107681.
  • [38] H. İnaç, Y. E. Ayözen, A. Atalan, and C. Ç. Dönmez, “Estimation of Postal Service Delivery Time and Energy Cost with E-Scooter by Machine Learning Algorithms,” Appl. Sci., vol. 12, no. 23, p. 12266, Nov. 2022, doi: 10.3390/app122312266.
  • [39] W. Khan, S. Walker, and W. Zeiler, “Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach,” Energy, vol. 240, p. 122812, 2022, doi: https://doi.org/10.1016/j.energy.2021.122812.
  • [40] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, R. Tibshirani, and J. Friedman, “Boosting and additive trees,” Elem. Stat. Learn. data mining, inference, Predict., pp. 337–387, 2009.
  • [41] G. McKenzie and D. Romm, “Measuring urban regional similarity through mobility signatures,” Comput. Environ. Urban Syst., vol. 89, p. 101684, Sep. 2021, doi: 10.1016/j.compenvurbsys.2021.101684.
  • [42] Z. Liu, Q. Pan, and J. Dezert, “A new belief-based K-nearest neighbor classification method,” Pattern Recognit., vol. 46, no. 3, pp. 834–844, 2013.
  • [43] J. Huang et al., “Cross-validation based K nearest neighbor imputation for software quality datasets: an empirical study,” J. Syst. Softw., vol. 132, pp. 226–252, 2017.
  • [44] Y. Tian, Y. Zhang, and H. Zhang, “Recent advances in stochastic gradient descent in deep learning,” Mathematics, vol. 11, no. 3, p. 682, 2023.
  • [45] J. Yang and G. Yang, “Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer,” Algorithms, vol. 11, no. 3, p. 28, 2018.
  • [46] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,” Adv. Neural Inf. Process. Syst., vol. 31, 2018.
  • [47] A. Keskin, "Türkiye enerji piyasasında piyasa takas fiyatı tahmini: Makine öğrenimi yöntemlerinin karşılaştırılması," Üçüncü Sektör Sosyal Ekonomi Dergisi, vol. 60, no. 2, pp. 1707–1719, 2025, doi: 10.63556/tisej.2025.1509.
  • [48] Y. Ayaz Atalan and A. Atalan, “Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance,” Appl. Sci., vol. 15, no. 1, p. 241, Dec. 2024, doi: 10.3390/app15010241.

Hava Parametrelerini Kullanarak Makine Öğrenmesine Dayalı Rüzgar Enerjisi Tahmini: Yalova Örneği

Yıl 2025, Sayı: 11, 40 - 49, 30.06.2025
https://doi.org/10.52693/jsas.1670486

Öz

Bu çalışmada, 2018 yılına ait Yalova ilinin saatlik meteorolojik verileri kullanılarak rüzgar enerjisi üretiminin tahmin edilmesinde çeşitli makine öğrenmesi algoritmaları değerlendirilmiştir. Girdi parametreleri; sıcaklık, bağıl nem, hava basıncı, rüzgar yönü ve rüzgar hızı gibi hava durumu parametreleridir. Toplam 50.530 veri noktası üzerinde yapılan analizde, Gradient Boosting (GB), Random Forests (RF), en yakın komşu (kNN) ve stokastik gradyan inişi (SGD) gibi yöntemler karşılaştırılmıştır. Model performansları Ortalama Mutlak Hata (MAE), Ortalama Kare Hata (MSE), Kök Ortalama Kare Hata (RMSE), Ortalama Mutlak Yüzde Hata (MAPE) ve R² kriterlerine göre değerlendirilmiştir. Sonuçlara göre, en iyi performansı gösteren algoritma; 0,039 MSE değeri, 0,197 RMSE değeri, 0,081 MAE değeri, 0,377 MAPE değeri ve 0,961 R² skoru ile RF olmuştur. Öte yandan, en düşük performansı gösteren model ise; 0,175 MSE değeri, 0,418 RMSE değeri, 0,303 MAE değeri, 0,581 MAPE değeri ve 0,822 R² skoru ile SGD modeli olmuştur. Bu bulgular, doğru hava durumu parametrelerinin seçimiyle desteklenen makine öğrenmesi modellerinin rüzgar enerjisi üretiminin tahmininde yüksek doğruluk sağlayabileceğini ve bu doğrultuda enerji yönetim politikalarına katkı sunabileceğini göstermektedir.

Kaynakça

  • [1] N. Abas, A. Kalair, and N. Khan, “Review of fossil fuels and future energy technologies,” Futures, vol. 69, pp. 31–49, 2015.
  • [2] P. Wilkinson, K. R. Smith, M. Joffe, and A. Haines, “A global perspective on energy: health effects and injustices,” Lancet, vol. 370, no. 9591, pp. 965–978, 2007.
  • [3] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology,” Renew. Sustain. energy Rev., vol. 39, pp. 748–764, 2014.
  • [4] A. Rahman, O. Farrok, and M. M. Haque, “Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic,” Renew. Sustain. energy Rev., vol. 161, p. 112279, 2022.
  • [5] A. Atalan and Y. A. Atalan, “Nonlinear Optimization Models of Box-Behnken Experimental Design: Turbine Simulation for Wind Power Plant,” 3rd International Conference on Engineering and Applied Natural Sciences, 2023.
  • [6] A. D. Şahin, “Progress and recent trends in wind energy,” Prog. energy Combust. Sci., vol. 30, no. 5, pp. 501–543, 2004.
  • [7] E. Toklu, “Overview of potential and utilization of renewable energy sources in Turkey,” Renew. Energy, vol. 50, pp. 456–463, 2013, doi: 10.1016/j.renene.2012.06.035.
  • [8] F. Cassola and M. Burlando, “Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output,” Appl. Energy, vol. 99, pp. 154–166, 2012.
  • [9] I. Sanchez, “Short-term prediction of wind energy production,” Int. J. Forecast., vol. 22, no. 1, pp. 43–56, 2006.
  • [10] S.-Q. Dotse, I. Larbi, A. M. Limantol, and L. C. De Silva, “A review of the application of hybrid machine learning models to improve rainfall prediction,” Model. Earth Syst. Environ., vol. 10, no. 1, pp. 19–44, 2024.
  • [11] A. Alkesaiberi, F. Harrou, and Y. Sun, “Efficient wind power prediction using machine learning methods: A comparative study,” Energies, vol. 15, no. 7, p. 2327, 2022.
  • [12] D. Wang, X. Gao, K. Meng, J. Qiu, L. L. Lai, and S. Gao, “Utilisation of kinetic energy from wind turbine for grid connections: a review paper,” IET Renew. Power Gener., vol. 12, no. 6, pp. 615–624, 2018.
  • [13] J. W. Zhou, W. Zhang, X. Jiang, and E. D. Zhai, “Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method,” Renew. Energy, vol. 188, pp. 96–113, 2022.
  • [14] C.-T. Chen, R. A. Islam, and S. Priya, “Electric energy generator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 3, pp. 656–661, 2006.
  • [15] E. Serban, M. Ordonez, and C. Pondiche, “Voltage and frequency grid support strategies beyond standards,” IEEE Trans. power Electron., vol. 32, no. 1, pp. 298–309, 2016.
  • [16] J. B. Welch and A. Venkateswaran, “The dual sustainability of wind energy,” Renew. Sustain. Energy Rev., vol. 13, no. 5, pp. 1121–1126, 2009.
  • [17] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learning forecasting methods: Concerns and ways forward,” PLoS One, vol. 13, no. 3, p. e0194889, 2018.
  • [18] P. Reichert and J. Mieleitner, “Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time‐dependent parameters,” Water Resour. Res., vol. 45, no. 10, 2009.
  • [19] Y. Zhang, M. Bocquet, V. Mallet, C. Seigneur, and A. Baklanov, “Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects,” Atmos. Environ., vol. 60, pp. 656–676, 2012.
  • [20] A. Atalan, “The ChatGPT application on quality management: a comprehensive review,” J. Manag. Anal., pp. 1–31, May 2025, doi: 10.1080/23270012.2025.2484225.
  • [21] S. Dewitte, J. P. Cornelis, R. Müller, and A. Munteanu, “Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction,” Remote Sens., vol. 13, no. 16, p. 3209, 2021.
  • [22] J. Devaraj, R. Madurai Elavarasan, G. M. Shafiullah, T. Jamal, and I. Khan, “A holistic review on energy forecasting using big data and deep learning models,” Int. J. energy Res., vol. 45, no. 9, pp. 13489–13530, 2021.
  • [23] Y. A. Atalan and A. Atalan, “Integration of the Machine Learning Algorithms and I-MR Statistical Process Control for Solar Energy,” Sustain., vol. 15, no. 18, Sep. 2023, doi: 10.3390/su151813782.
  • [24] E. T. Renani, M. F. M. Elias, and N. A. Rahim, “Using data-driven approach for wind power prediction: A comparative study,” Energy Convers. Manag., vol. 118, pp. 193–203, 2016.
  • [25] A. Atalan and C. Ç. Dönmez, “Dynamic Price Application to Prevent Financial Losses to Hospitals Based on Machine Learning Algorithms,” Healthcare, vol. 12, no. 13, p. 1272, Jun. 2024, doi: 10.3390/healthcare12131272.
  • [26] H. Szczepaniuk and E. K. Szczepaniuk, “Applications of artificial intelligence algorithms in the energy sector,” Energies, vol. 16, no. 1, p. 347, 2022.
  • [27] H. Demolli, A. S. Dokuz, A. Ecemis, and M. Gokcek, “Wind power forecasting based on daily wind speed data using machine learning algorithms,” Energy Convers. Manag., vol. 198, p. 111823, 2019, doi: https://doi.org/10.1016/j.enconman.2019.111823.
  • [28] P. Piotrowski, D. Baczyński, M. Kopyt, and T. Gulczyński, “Advanced ensemble methods using machine learning and deep learning for one-day-ahead forecasts of electric energy production in wind farms,” Energies, vol. 15, no. 4, p. 1252, 2022.
  • [29] L. Wang, X. Zhou, X. Zhu, Z. Dong, and W. Guo, “Estimation of biomass in wheat using random forest regression algorithm and remote sensing data,” Crop J., vol. 4, no. 3, pp. 212–219, Jun. 2016, doi: 10.1016/j.cj.2016.01.008.
  • [30] P. Moshtaghi, N. Hajialigol, and B. Rafiei, “A Comprehensive Review of Artificial Intelligence Applications in Wind Energy Power Generation,” Available SSRN 5061006, 2024.
  • [31] K. Yazıcı, “Makine öğrenmesi yöntemleri kullanılarak kısa dönem rüzgar gücü tahmini.” Sakarya Üniversitesi, 2021.
  • [32] Y. Qin et al., “Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal,” Appl. Energy, vol. 236, pp. 262–272, 2019.
  • [33] U. Singh, M. Rizwan, M. Alaraj, and I. Alsaidan, “A machine learning-based gradient boosting regression approach for wind power production forecasting: A step towards smart grid environments,” Energies, vol. 14, no. 16, p. 5196, 2021.
  • [34] B. Erisen, “Wind Turbine Scada Dataset 2018 Scada Data of a Wind Turbine in Turkey,” Kaggle, 2018. https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
  • [35] Open-meteo, “Accurate Weather Forecasts for Any Location,” 2025. https://archive-api.open-meteo.com/v1/archive
  • [36] A. Atalan, “Forecasting drinking milk price based on economic, social, and environmental factors using machine learning algorithms,” Agribusiness, vol. 39, no. 1, pp. 214–241, Jan. 2023, doi: 10.1002/agr.21773.
  • [37] D. Thakur and S. Biswas, “Permutation importance based modified guided regularized random forest in human activity recognition with smartphone,” Eng. Appl. Artif. Intell., vol. 129, p. 107681, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107681.
  • [38] H. İnaç, Y. E. Ayözen, A. Atalan, and C. Ç. Dönmez, “Estimation of Postal Service Delivery Time and Energy Cost with E-Scooter by Machine Learning Algorithms,” Appl. Sci., vol. 12, no. 23, p. 12266, Nov. 2022, doi: 10.3390/app122312266.
  • [39] W. Khan, S. Walker, and W. Zeiler, “Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach,” Energy, vol. 240, p. 122812, 2022, doi: https://doi.org/10.1016/j.energy.2021.122812.
  • [40] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, R. Tibshirani, and J. Friedman, “Boosting and additive trees,” Elem. Stat. Learn. data mining, inference, Predict., pp. 337–387, 2009.
  • [41] G. McKenzie and D. Romm, “Measuring urban regional similarity through mobility signatures,” Comput. Environ. Urban Syst., vol. 89, p. 101684, Sep. 2021, doi: 10.1016/j.compenvurbsys.2021.101684.
  • [42] Z. Liu, Q. Pan, and J. Dezert, “A new belief-based K-nearest neighbor classification method,” Pattern Recognit., vol. 46, no. 3, pp. 834–844, 2013.
  • [43] J. Huang et al., “Cross-validation based K nearest neighbor imputation for software quality datasets: an empirical study,” J. Syst. Softw., vol. 132, pp. 226–252, 2017.
  • [44] Y. Tian, Y. Zhang, and H. Zhang, “Recent advances in stochastic gradient descent in deep learning,” Mathematics, vol. 11, no. 3, p. 682, 2023.
  • [45] J. Yang and G. Yang, “Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer,” Algorithms, vol. 11, no. 3, p. 28, 2018.
  • [46] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,” Adv. Neural Inf. Process. Syst., vol. 31, 2018.
  • [47] A. Keskin, "Türkiye enerji piyasasında piyasa takas fiyatı tahmini: Makine öğrenimi yöntemlerinin karşılaştırılması," Üçüncü Sektör Sosyal Ekonomi Dergisi, vol. 60, no. 2, pp. 1707–1719, 2025, doi: 10.63556/tisej.2025.1509.
  • [48] Y. Ayaz Atalan and A. Atalan, “Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance,” Appl. Sci., vol. 15, no. 1, p. 241, Dec. 2024, doi: 10.3390/app15010241.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Öğrenme (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Abdulkadir Atalan 0000-0003-0924-3685

Lütfi Alper Gündoğdu 0000-0002-2002-0952

Harun Kahyalık 0009-0008-9636-8008

Yasemin Ayaz Atalan 0000-0001-7767-0342

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 6 Nisan 2025
Kabul Tarihi 21 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 11

Kaynak Göster

IEEE A. Atalan, L. A. Gündoğdu, H. Kahyalık, ve Y. Ayaz Atalan, “Machine Learning-Based Wind Energy Forecasting Using Weather Parameters: The Example of Yalova”, JSAS, sy. 11, ss. 40–49, Haziran2025, doi: 10.52693/jsas.1670486.