Araştırma Makalesi
BibTex RIS Kaynak Göster

A STUDY ON GENERALIZED 5-PRIMES NUMBERS

Yıl 2020, Cilt: 4 Sayı: 3, 185 - 202, 19.08.2020
https://doi.org/10.26900/jsp.4.017

Öz

In this paper, we introduce the generalized 5-primes numbers sequences and we deal with, in detail, three special cases which we call them 5-primes, Lucas 5-primes and modified 5-primes sequences. We present Binet's formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences ........................... .................... ....................................   

 2010  Mathematics Subject Classication. 11B39,  11B83.

Kaynakça

  • [1] Howard, F.T., Saidak, F., Zhou’s Theory of Constructing Identities, Congress Numer. 200, 225-237, 2010.
  • [2] Kalman, D., Generalized Fibonacci Numbers By Matrix Methods, Fibonacci Quarterly, 20(1), 73-76, 1982.
  • [3] Kiliç, E., Stanica, P., A Matrix Approach for General Higher Order Linear Recurrences, Bulletin of the Malaysian Mathematical Sciences Society, (2) 34(1), 51.67, 2011.
  • [4] Melham, R. S., Some Analogs of the Identity , F_n^2+F_(n+1)^2=F_(2n+1)^2 Fibonacci Quarterly, 305-311, 1999.
  • [5] Natividad, L. R., On Solving Fibonacci-Like Sequences of Fourth, Fifth and Sixth Order, International Journal of Mathematics and Computing, 3 (2), 2013.
  • [6] Rathore, G.P.S., Sikhwal, O., Choudhary, R., Formula for finding nth Term of Fibonacci-Like Sequence of Higher Order, International Journal of Mathematics And its Applications, 4 (2-D), 75-80, 2016.
  • [7] Sloane, N.J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
  • [8] Soykan, Y., Simson Identity of Generalized m-step Fibonacci Numbers, Int. J. Adv. Appl. Math. and Mech. 7(2), 45-56, 2019.
  • [9] Soykan, Y., Sum Formulas For Generalized Fifth-Order Linear Recurrence Sequences, Journal of Advances in Mathematics and Computer Science, 34(5), 1-14, 2019, Article no.JAMCS.53303, ISSN: 2456-9968, DOI: 10.9734/JAMCS/2019/v34i530224.
Yıl 2020, Cilt: 4 Sayı: 3, 185 - 202, 19.08.2020
https://doi.org/10.26900/jsp.4.017

Öz

Kaynakça

  • [1] Howard, F.T., Saidak, F., Zhou’s Theory of Constructing Identities, Congress Numer. 200, 225-237, 2010.
  • [2] Kalman, D., Generalized Fibonacci Numbers By Matrix Methods, Fibonacci Quarterly, 20(1), 73-76, 1982.
  • [3] Kiliç, E., Stanica, P., A Matrix Approach for General Higher Order Linear Recurrences, Bulletin of the Malaysian Mathematical Sciences Society, (2) 34(1), 51.67, 2011.
  • [4] Melham, R. S., Some Analogs of the Identity , F_n^2+F_(n+1)^2=F_(2n+1)^2 Fibonacci Quarterly, 305-311, 1999.
  • [5] Natividad, L. R., On Solving Fibonacci-Like Sequences of Fourth, Fifth and Sixth Order, International Journal of Mathematics and Computing, 3 (2), 2013.
  • [6] Rathore, G.P.S., Sikhwal, O., Choudhary, R., Formula for finding nth Term of Fibonacci-Like Sequence of Higher Order, International Journal of Mathematics And its Applications, 4 (2-D), 75-80, 2016.
  • [7] Sloane, N.J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
  • [8] Soykan, Y., Simson Identity of Generalized m-step Fibonacci Numbers, Int. J. Adv. Appl. Math. and Mech. 7(2), 45-56, 2019.
  • [9] Soykan, Y., Sum Formulas For Generalized Fifth-Order Linear Recurrence Sequences, Journal of Advances in Mathematics and Computer Science, 34(5), 1-14, 2019, Article no.JAMCS.53303, ISSN: 2456-9968, DOI: 10.9734/JAMCS/2019/v34i530224.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Basic Sciences and Engineering
Yazarlar

Yüksel Soykan 0000-0002-1895-211X

Yayımlanma Tarihi 19 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 3

Kaynak Göster

APA Soykan, Y. (2020). A STUDY ON GENERALIZED 5-PRIMES NUMBERS. Journal of Scientific Perspectives, 4(3), 185-202. https://doi.org/10.26900/jsp.4.017