Araştırma Makalesi
BibTex RIS Kaynak Göster

Galois Fields And Construction of 2k-1 Designs with Highest Resolution

Yıl 2010, Cilt: 3 Sayı: 1, 45 - 53, 30.06.2010

Öz

Fractional factorialdesigns are commonly used in practice. In this article, the finite flelds theory and

polynomials over Galois fields were used to design 2k-1 designs with highest resolution.

Kaynakça

  • F. Çall alp, (1999), Say lar Teorisi, Ystanbul.
  • N. Danac o lu, (2005), Kesirli Çok Etkenli Deneylerde Çözüm ve En Az Sapma Kavram , H.Ü. Ystatistik Bölümü Doktora Tezi.
  • A. Dey, (1985), Orthogonal Fractional Factorial Designs, New Delhi, Wiley Eastern.
  • J. A. Gallian, (1986), Contemporary Abstract Algebra, D.C.Health and Company.
  • W. C. Huffman, V. Pless, (2003), Fundemantals of Error Correcting Codes, Cambridge University Pres.
  • A. Kaya, (1988), Say lar Kuram na Giri(, Yzmir.
  • A. J. Menezes, S. A. Vanstone, P. C. Oorschot van, (1997), Handbook of Applied Cryptography, CRC Pres.
  • D. C. Montgomery, (1984), Design and Analysis of Experiments, Second Edition, John Wiley&Sons, NY.
  • G. Pistone, M. P. Rogartin, (2007), Algebraic Statistics of Level Codings for Fractional Factorial Designs,
  • Journal of Statistical Plann. and Inf.,138, 234-244. T. Shirakura, T. Suetsugu, T. Tsuji, (2002), Constructions of Main Effect Plus Two Plans for 2mFactorials,
  • Journal of Statistical Plann. and Inf., 105, 405-415. S. A. Vanstone, P. C. Oorschot van, (1989), An Introduction to Error-Correcting Codes with Application,s
  • Kluwer Academic Publishers. D. Wiggert, 1978, Error-Control Coding and Applications, Artech House.
  • H. Xu, (2009), Algorithm construction of efficient fractional factorial designs with large sizes, Technometrics, 51,3,262-277.

Galois cisimleri ve en yüksek çözümlü 2^k-1 tasarımlarının oluşturulması

Yıl 2010, Cilt: 3 Sayı: 1, 45 - 53, 30.06.2010

Öz

Kesirli çok
etkenli tasarımları, uygulamada yaygın olarak kullanılmaktadır. Bu çalışmada,
sonlu cisim teorisinden, Galois cisimleri üzerindeki polinomlardan
yararlanarak, 2k-1tasarımlarının nasıl oluşturulabileceği
gösterilmiştir
.  

Kaynakça

  • F. Çall alp, (1999), Say lar Teorisi, Ystanbul.
  • N. Danac o lu, (2005), Kesirli Çok Etkenli Deneylerde Çözüm ve En Az Sapma Kavram , H.Ü. Ystatistik Bölümü Doktora Tezi.
  • A. Dey, (1985), Orthogonal Fractional Factorial Designs, New Delhi, Wiley Eastern.
  • J. A. Gallian, (1986), Contemporary Abstract Algebra, D.C.Health and Company.
  • W. C. Huffman, V. Pless, (2003), Fundemantals of Error Correcting Codes, Cambridge University Pres.
  • A. Kaya, (1988), Say lar Kuram na Giri(, Yzmir.
  • A. J. Menezes, S. A. Vanstone, P. C. Oorschot van, (1997), Handbook of Applied Cryptography, CRC Pres.
  • D. C. Montgomery, (1984), Design and Analysis of Experiments, Second Edition, John Wiley&Sons, NY.
  • G. Pistone, M. P. Rogartin, (2007), Algebraic Statistics of Level Codings for Fractional Factorial Designs,
  • Journal of Statistical Plann. and Inf.,138, 234-244. T. Shirakura, T. Suetsugu, T. Tsuji, (2002), Constructions of Main Effect Plus Two Plans for 2mFactorials,
  • Journal of Statistical Plann. and Inf., 105, 405-415. S. A. Vanstone, P. C. Oorschot van, (1989), An Introduction to Error-Correcting Codes with Application,s
  • Kluwer Academic Publishers. D. Wiggert, 1978, Error-Control Coding and Applications, Artech House.
  • H. Xu, (2009), Algorithm construction of efficient fractional factorial designs with large sizes, Technometrics, 51,3,262-277.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

N. Danacıoğlu

F. Z. Muluk

Yayımlanma Tarihi 30 Haziran 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE N. Danacıoğlu ve F. Z. Muluk, “Galois cisimleri ve en yüksek çözümlü 2^k-1 tasarımlarının oluşturulması”, JSSA, c. 3, sy. 1, ss. 45–53, 2010.