Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Egzersiz Programlarının Dayanıklılık ve Enerji Metabolizması ile İlişkili Genlerin İfadesine Etkisi

Yıl 2021, , 482 - 490, 31.12.2021
https://doi.org/10.25307/jssr.971105

Öz

Fiziksel egzersiz vücudun enerji metabolizmasını destekler. Düzenli egzersiz sonrası insan vücudunda meydana gelen fizyolojik değişiklikler iyi tanımlanmış olmasına rağmen, egzersiz sırasında vücudun tepkisinin nasıl değiştiği bilinmemektedir. Çalışmamızda enerji metabolizması (AMPD1, PPARA) ve dayanıklılık (ADRB2) ile ilgili genlerin ekspresyonu üzerine akut ve kronik egzersizin etkileri araştırıldı. Çalışma grubu, 12 kadın, 12 erkek toplam 24 kişiden oluşturuldu. Çalışmaya katılan kişilerin maksimal oksijen kullanma kapasiteleri, 8 haftalık antrenman programlarının başında ve sonunda Bruce test protokolü ile oransal olarak belirlendi. Maksimal oksijen kullanma kapasiteleri hesaplandıktan sonra, her katılımcıya koşu bandında kendi maksVO2’sine ulaştığı hız ve eğimde, tükenene kadar akut koşu egzersizi yaptırıldı. Aynı kişilere 8 hafta boyunca haftada bir gün sürekli koşular (%50–70), iki gün orta süreli interval antrenman programı (%90-95) uygulandı. Akut egzersiz öncesi ve sonrası ile kronik egzersizlerden hemen sonra periferik kan örnekleri alındı. TRIzol yardımıyla RNA izolasyonu yapıldı. Kantitatif Real Time PCR cihazı ile mültipleks olarak genlerin ekspresyonu belirlendi. Karşılaştırmalar hesaplanmış gen ekspresyon değerleri ile nicel veriler için bağımsız iki örneklem t testi, Mann-Whitney U kullanılarak yapıldı. İstatistiksel anlamlılık düzeyi p<0,05 olarak alındı. Sonuçlarımız, akut egzersiz sonrası kadınlarda ADRB2 ve AMPD1 gen ekspresyon değerlerinin arttığını göstermektedir. Akut egzersiz öncesine göre 8 haftalık antrenman programından sonra hem erkek hem de kadınlarda ADRB2, AMPD1, PPARA gen ekspresyonlarının ortalama değerlerinde değişiklikler oldu. PPARA geninin ekspresyonu, sadece kadın grubu için egzersiz öncesi ile karşılaştırıldığında egzersizden sonra önemli ölçüde azalmıştır. Sonuçlarımız; farklı cinsiyetler üzerinde yapılan farklı antrenman programlarının enerji metabolizması ve dayanıklılık ile ilgili genelerin, gen ekspresyonları hakkında fikir vermesi konusunda önemli olduğunu düşündürmektedir.

Destekleyen Kurum

Erciyes Üniveristesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir.

Proje Numarası

TSD-12-3929

Kaynakça

  • Ahmetov, I.I. & Fedotovskaya, O.N. (2012). Sports genomics: Current state of knowledge and future directions. Cellular and Molecular Exercise Physiology, 1(1), 1-24. https://doi.org:10.7457/cmep.v1i1.e1
  • Bea, J.W., Lohman, T.G., Cussler, E.C., Going, S.B. & Thompson, P.A. (2010). Lifestyle modifies the relationship between body composition and adrenergic receptor genetic polymorphisms, ADRB2, ADRB and ADRA2B: A Secondary analysis of a randomized controlled trial of physical activity among postmenopausal women. Behavior Genetics, 40(5), 649–659. https://doi.org:10.1007/s10519-010-9361
  • Bruce, R.A., Lovejoy, Jr. F. W., Pearson, R., Yu, P.N.G., Brothers, G.B. & Velasquez, T. (1949). Normal respiratory and circulatory pathways of adaptation in exercise. The Journal of Clinical Investigation, 28(6 Pt 2), 1423–1430. https://doi:10.1172/JCI102207
  • Bray, M.S., Hagberg, J.M., Perusse, L., Rankinen, T., Roth, S.M., Wolfarth, B., Bouchard, C. (2009) The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc., 41(1),45-73. https://doi.org: 10.1249/mss.0b013e3181844179
  • Catoire, M., Mensink, M., Boekschoten, M.V., Hangelbroek, R., Müller, M., Schrauwen, P. & Kersten, S. (2012). Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle. PloS One, 7(11): e51066. https://doi.org: 10.1371/journal.pone.0051066
  • Cho, H.W., Shin, S., Song, K.D., Park, J.W., Choi, J.Y., Lee, H.K. & Cho, B.W. (2015). Molecular characterization and expression analysis of adrenergic receptor beta 2 (ADRB2) gene before and after exercise in the horse. Asian Australas The Journal of Animal Science, 28(5),686-690. https://doi.org:10.5713/ajas.14.0573
  • Cieszczyk, P., Ostanek, M., Leońska-Duniec, A., Sawczuk, M., Maciejewska, A., Eider, J., Ficek, K., Sygit, K. & Kotarska, K. (2012). Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athlete. Journal of Sports Sciences, 30(1), 31-5. https:// doi:10.1080/02640414.2011.623710
  • Cieszczyk, P., Eider, J., Ostanek, M., Leonska-Duniec, A., Ficek, K., Kotarska, K., Girdauskas, G. (2011). Is the C34T polymorphism of the AMPD1 gene associated with athlete performance in rowing? The International Journal of Sports Medicine, 32(12), 987–991. https://doi.org:10.1055/s-0031-1283186
  • Duniec, L.A. (2013). Genetic research in modern sport. Central European Journal of Sport Sciences and Medicine, 3(3),19–26.
  • Eynon, N., Meckel, Y., Alves, A.J., Yamin, C., Goldhammer, E. & Sagiv, M. (2009). Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance? Experimental Physiology, 94 (11), 1147-1152. https://doi.org:10.1113/expphysiol.2009.049668
  • Fedotovskaya, O.N., Danilova, A.A. & Ahmetov. I.I. (2013). Effect of AMPD1 gene polymorphism on muscle activity in humans. Bulletin of Experimental Biologyand Medicine, 154(4), 489-491. https://doi.org/10.1007/s10517-013-1984-9
  • Pareja-Galeano, H., Sanchis-Gomar, F. & García-Giménez, J. (2014). Physical exercise and epigenetic modulation: Elucidating intricate mechanisms. Sports Medicine, 44(4), 429-436. https://doi.org:10.1007/s40279-013-0138-6
  • Ginevičienė, V., Jakaitiene, A., Pranculis, A., Milasius, K., Tubelis, L. & Utkus, A. (2014). AMPD1rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genetics 15(58), 1471-2156. https://doi.org:10.1186/1471-2156-15-58
  • Ginevičienė, V., Jakaitiene, A., Tubelis, L., Kucinskas, V. (2014). Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. European Journal of Sport Science, 14(Suppl.1), 289-295. doi:10.1080/17461391.2012.691117
  • Hargreaves, M., Hawley, J.A. & Jeukendrup, A. (2004). Pre-exercise carbohydrate and fat ingestion: Effects on metabolism and performance. Journal of Sports Sciences, 22(1), 31–38. https://doi.org:10.1080/0264041031000140536
  • Henderson, G.C., Fattor, J.A., Horning, M.A., Faghihnia, N., Johnson, M.L., Mau, T.L., Luke-Zeitoun, M. & Brooks, G.A. (2007). Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. The Journal of Physiology, 584 (Pt 3), 963-981. https://doi.org:10.1113/jphysiol.2007.137331
  • Horton, T.J., Pagliassotti, M.J., Hobbs, K. & Hill, J.O. (1998). Fuel metabolism in men and women during and after long- duration exercise. The Journal of Applied Physiology, 85(5), 1823-1832. https://doi.org:10.1152/jappl.1998.85.5.1823
  • Holst, D., Luquet, S., Nogueira, V., Kristiansen, K., Leverve, X. & Grimaldi, P. A. (2003). Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle. Biochimica et Biophysica Acta, 1633(1), 43–50. https://doi.org:10.1016/s1388-1981(03)00071-4
  • Janikowska, G., Kochańska-Dziurowicz, A., Żebrowska, A., Bijak, A. & Kimsa., M. (2014). Adrenergic response to maximum exercise of trained road cyclists. Journal of Human Kinetics, 40, 103-111 https://doi.org:10.2478/hukin-0012
  • Jemiolo, B. & Trappe, S. (2004). Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise, Biochemical and Biophysical Research Communications, 320(3), 1043–1050. https://doi.org:10.1016/j.bbrc.2004.05.223
  • Kang, J., Hoffman, J.R., Ratamess, N.A., Faigenbaum, A.D., Falvo, M. & Wendell, M. (2007). Effect of exercise intensity on fatutilization in males and females. Research in Sports Medicine, 15(3), 175-88. https://doi.org:10.1080/15438620701525474
  • Liang, H. & Ward, W.F. (2006). Staying Current PGC-1: A Key regulator of energy metabolism. Advances in Physiology Education, 30(4), 145–151. https://doi.org:10.1152/advan.00052.2006
  • Lippi, G., Longo, U.G. & Maffulli, N. (2010). Genetics and sports. British Medical Bulletin, 93(1), 27–47. https://doi.org/10.1093/bmb/ldp007
  • Macho-Azcarate, T., Marti, A., Gonzalez, A., Martinez, J.A. & Ibanez, J. (2002). Gln27Glu polymorphism in the beta2 adrenergic receptor gene and lipid metabolism during exercise in obese women. International journal of obesity and related metabolic disorders, 26(11), 1434-1441. https://doi.org:10.1038/sj.ijo.0802129
  • Macho, A.T., Marti, A., Calabuig, J. & Martinez, J.A. (2003). Basal fat oxidation and after a peak oxygen consumption test in obese women with a beta2 adrenoceptor gene polymorphism. The Journal of Nutritional Biochemistry, 14(5), 275-279. https://doi.org:10.1016/s0955-2863(03)00035-4
  • Maciejewska, A., Sawczuk, M. & Cieszczyk, P. (2011). Variation in the PRAR gene in Polish rowers. Journal of Science and Medicine in Sport, 14(1), 58-64. https://doi.org:10.1016/j.jsams.2010.05.006
  • Nakamura, M.T., Yudell, B.E. & Loor. J.J. (2014). Regulation of energy metabolism by long-chain fatty acids. Progress in Lipid Research, 53,124–144. https://doi.org:10.1016/j.plipres.2013.12.001
  • Thomaes, T., Thomis, M., Onkelinx, S., Fagard R., Matthijs, G., Buys, R., Schepers, D., Cornelissen, V. & Vanhees, L. (2011). A genetic predisposition score for muscular endophenotypes predicts the increase in aerobic power after training: the CAREGENE study. BMC Genetics, 12(84), 1-10. https://doi.org:10.1186/1471-2156-12-84
  • Tunstall, R.J., Mehan, K.A., Wadley, G.D., Coiller, G.R., Bonen, A., Hargreaves, M. & Cameron-Smith, D. (2002). Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab; 283(1), 66–72. doi:10.1152/ajpendo.00475.2001
  • Venables, M.C., Achten, J.& Jeukendrup, A.E. (2005). Determinants of fat oxidation during exercise in healthy men and women: A Cross-sectional study. The Journal of Applied Physiology, 98(1), 160-167. https://doi.org:10.1152/japplphysicol.00662.2003

The Effect of Different Programs of Exercise on The Expression of Genes Associated with Endurance and Energy Metabolism

Yıl 2021, , 482 - 490, 31.12.2021
https://doi.org/10.25307/jssr.971105

Öz

Physical exercise promotes the energy metabolism of the body. While physiological changes occuring in human body after regular exercise is well defined, it is not known how the body’s response changes during the time course of the exercise. Here, we investigated how the acute and chronic exercise alters expressions of genes related to energy metabolism and endurance. Our study investigated the effects of acute and chronic exercise on the expression of genes related to energy metabolism (AMPD1, PPARA) and endurance (ADRB2). Study group; was formed with 24 people: 12 healthy females and 12 healthy males. Maximal oxygen use capacities of the participants were determined by the Bruce test protocol at the beginning and end of the 8-week training program. After calculating their maximal oxygen use capacity, each participant was given an acute running exercise on the tread mill at the speed and incline that the participant would reach to his/her maxVO2 until he/she exhausted. The same people were built to continuous runs (%50-70) once every 8 weeks, and two days of medium-term interval training program (%90-95). Peripheral blood samples were taken before and after acute exercise and immediately after chronic exercises. RNA isolation was performed using TRIzol Reagent from peripheral blood mononuclear cells. Gene expression was determined by Biomark Real-Time PCR (RT-PCR). Gene expression data was quantified by using both t-test and Mann-Whitney U tests. The statistical level of p <0.05 was taken. Our results show that ADRB2 and AMPD1 gene expression values increase in women after acute exercise. There were changes in the mean values of ADRB2, AMPD1, PPARA gene expressions in both men and women after the 8-week training program compared to pre-acute exercise. Expression of PPARA gene significantly decreased after exercise compared to pre-exercise only for the female group. This study is important in developing ideas about gene expressions of genes related to energy training and endurance with different selections and different exercise programs. Our results; this suggests that different training programs on different genders are important in terms of giving an idea about the gene expressions of genes related to energy metabolism and endurance.

Proje Numarası

TSD-12-3929

Kaynakça

  • Ahmetov, I.I. & Fedotovskaya, O.N. (2012). Sports genomics: Current state of knowledge and future directions. Cellular and Molecular Exercise Physiology, 1(1), 1-24. https://doi.org:10.7457/cmep.v1i1.e1
  • Bea, J.W., Lohman, T.G., Cussler, E.C., Going, S.B. & Thompson, P.A. (2010). Lifestyle modifies the relationship between body composition and adrenergic receptor genetic polymorphisms, ADRB2, ADRB and ADRA2B: A Secondary analysis of a randomized controlled trial of physical activity among postmenopausal women. Behavior Genetics, 40(5), 649–659. https://doi.org:10.1007/s10519-010-9361
  • Bruce, R.A., Lovejoy, Jr. F. W., Pearson, R., Yu, P.N.G., Brothers, G.B. & Velasquez, T. (1949). Normal respiratory and circulatory pathways of adaptation in exercise. The Journal of Clinical Investigation, 28(6 Pt 2), 1423–1430. https://doi:10.1172/JCI102207
  • Bray, M.S., Hagberg, J.M., Perusse, L., Rankinen, T., Roth, S.M., Wolfarth, B., Bouchard, C. (2009) The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc., 41(1),45-73. https://doi.org: 10.1249/mss.0b013e3181844179
  • Catoire, M., Mensink, M., Boekschoten, M.V., Hangelbroek, R., Müller, M., Schrauwen, P. & Kersten, S. (2012). Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle. PloS One, 7(11): e51066. https://doi.org: 10.1371/journal.pone.0051066
  • Cho, H.W., Shin, S., Song, K.D., Park, J.W., Choi, J.Y., Lee, H.K. & Cho, B.W. (2015). Molecular characterization and expression analysis of adrenergic receptor beta 2 (ADRB2) gene before and after exercise in the horse. Asian Australas The Journal of Animal Science, 28(5),686-690. https://doi.org:10.5713/ajas.14.0573
  • Cieszczyk, P., Ostanek, M., Leońska-Duniec, A., Sawczuk, M., Maciejewska, A., Eider, J., Ficek, K., Sygit, K. & Kotarska, K. (2012). Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athlete. Journal of Sports Sciences, 30(1), 31-5. https:// doi:10.1080/02640414.2011.623710
  • Cieszczyk, P., Eider, J., Ostanek, M., Leonska-Duniec, A., Ficek, K., Kotarska, K., Girdauskas, G. (2011). Is the C34T polymorphism of the AMPD1 gene associated with athlete performance in rowing? The International Journal of Sports Medicine, 32(12), 987–991. https://doi.org:10.1055/s-0031-1283186
  • Duniec, L.A. (2013). Genetic research in modern sport. Central European Journal of Sport Sciences and Medicine, 3(3),19–26.
  • Eynon, N., Meckel, Y., Alves, A.J., Yamin, C., Goldhammer, E. & Sagiv, M. (2009). Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance? Experimental Physiology, 94 (11), 1147-1152. https://doi.org:10.1113/expphysiol.2009.049668
  • Fedotovskaya, O.N., Danilova, A.A. & Ahmetov. I.I. (2013). Effect of AMPD1 gene polymorphism on muscle activity in humans. Bulletin of Experimental Biologyand Medicine, 154(4), 489-491. https://doi.org/10.1007/s10517-013-1984-9
  • Pareja-Galeano, H., Sanchis-Gomar, F. & García-Giménez, J. (2014). Physical exercise and epigenetic modulation: Elucidating intricate mechanisms. Sports Medicine, 44(4), 429-436. https://doi.org:10.1007/s40279-013-0138-6
  • Ginevičienė, V., Jakaitiene, A., Pranculis, A., Milasius, K., Tubelis, L. & Utkus, A. (2014). AMPD1rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genetics 15(58), 1471-2156. https://doi.org:10.1186/1471-2156-15-58
  • Ginevičienė, V., Jakaitiene, A., Tubelis, L., Kucinskas, V. (2014). Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. European Journal of Sport Science, 14(Suppl.1), 289-295. doi:10.1080/17461391.2012.691117
  • Hargreaves, M., Hawley, J.A. & Jeukendrup, A. (2004). Pre-exercise carbohydrate and fat ingestion: Effects on metabolism and performance. Journal of Sports Sciences, 22(1), 31–38. https://doi.org:10.1080/0264041031000140536
  • Henderson, G.C., Fattor, J.A., Horning, M.A., Faghihnia, N., Johnson, M.L., Mau, T.L., Luke-Zeitoun, M. & Brooks, G.A. (2007). Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. The Journal of Physiology, 584 (Pt 3), 963-981. https://doi.org:10.1113/jphysiol.2007.137331
  • Horton, T.J., Pagliassotti, M.J., Hobbs, K. & Hill, J.O. (1998). Fuel metabolism in men and women during and after long- duration exercise. The Journal of Applied Physiology, 85(5), 1823-1832. https://doi.org:10.1152/jappl.1998.85.5.1823
  • Holst, D., Luquet, S., Nogueira, V., Kristiansen, K., Leverve, X. & Grimaldi, P. A. (2003). Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle. Biochimica et Biophysica Acta, 1633(1), 43–50. https://doi.org:10.1016/s1388-1981(03)00071-4
  • Janikowska, G., Kochańska-Dziurowicz, A., Żebrowska, A., Bijak, A. & Kimsa., M. (2014). Adrenergic response to maximum exercise of trained road cyclists. Journal of Human Kinetics, 40, 103-111 https://doi.org:10.2478/hukin-0012
  • Jemiolo, B. & Trappe, S. (2004). Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise, Biochemical and Biophysical Research Communications, 320(3), 1043–1050. https://doi.org:10.1016/j.bbrc.2004.05.223
  • Kang, J., Hoffman, J.R., Ratamess, N.A., Faigenbaum, A.D., Falvo, M. & Wendell, M. (2007). Effect of exercise intensity on fatutilization in males and females. Research in Sports Medicine, 15(3), 175-88. https://doi.org:10.1080/15438620701525474
  • Liang, H. & Ward, W.F. (2006). Staying Current PGC-1: A Key regulator of energy metabolism. Advances in Physiology Education, 30(4), 145–151. https://doi.org:10.1152/advan.00052.2006
  • Lippi, G., Longo, U.G. & Maffulli, N. (2010). Genetics and sports. British Medical Bulletin, 93(1), 27–47. https://doi.org/10.1093/bmb/ldp007
  • Macho-Azcarate, T., Marti, A., Gonzalez, A., Martinez, J.A. & Ibanez, J. (2002). Gln27Glu polymorphism in the beta2 adrenergic receptor gene and lipid metabolism during exercise in obese women. International journal of obesity and related metabolic disorders, 26(11), 1434-1441. https://doi.org:10.1038/sj.ijo.0802129
  • Macho, A.T., Marti, A., Calabuig, J. & Martinez, J.A. (2003). Basal fat oxidation and after a peak oxygen consumption test in obese women with a beta2 adrenoceptor gene polymorphism. The Journal of Nutritional Biochemistry, 14(5), 275-279. https://doi.org:10.1016/s0955-2863(03)00035-4
  • Maciejewska, A., Sawczuk, M. & Cieszczyk, P. (2011). Variation in the PRAR gene in Polish rowers. Journal of Science and Medicine in Sport, 14(1), 58-64. https://doi.org:10.1016/j.jsams.2010.05.006
  • Nakamura, M.T., Yudell, B.E. & Loor. J.J. (2014). Regulation of energy metabolism by long-chain fatty acids. Progress in Lipid Research, 53,124–144. https://doi.org:10.1016/j.plipres.2013.12.001
  • Thomaes, T., Thomis, M., Onkelinx, S., Fagard R., Matthijs, G., Buys, R., Schepers, D., Cornelissen, V. & Vanhees, L. (2011). A genetic predisposition score for muscular endophenotypes predicts the increase in aerobic power after training: the CAREGENE study. BMC Genetics, 12(84), 1-10. https://doi.org:10.1186/1471-2156-12-84
  • Tunstall, R.J., Mehan, K.A., Wadley, G.D., Coiller, G.R., Bonen, A., Hargreaves, M. & Cameron-Smith, D. (2002). Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab; 283(1), 66–72. doi:10.1152/ajpendo.00475.2001
  • Venables, M.C., Achten, J.& Jeukendrup, A.E. (2005). Determinants of fat oxidation during exercise in healthy men and women: A Cross-sectional study. The Journal of Applied Physiology, 98(1), 160-167. https://doi.org:10.1152/japplphysicol.00662.2003
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Spor Hekimliği
Bölüm Orijinal Makale
Yazarlar

Neşe Akpınar Kocakulak 0000-0001-5798-263X

Serpil Taheri 0000-0001-5806-8241

Elif Funda Şener 0000-0002-5644-5442

Kenan Aycan 0000-0002-3275-0573

Yusuf Özkul 0000-0002-3044-5663

Proje Numarası TSD-12-3929
Yayımlanma Tarihi 31 Aralık 2021
Kabul Tarihi 16 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Akpınar Kocakulak, N., Taheri, S., Şener, E. F., Aycan, K., vd. (2021). The Effect of Different Programs of Exercise on The Expression of Genes Associated with Endurance and Energy Metabolism. Journal of Sport Sciences Research, 6(2), 482-490. https://doi.org/10.25307/jssr.971105
AMA Akpınar Kocakulak N, Taheri S, Şener EF, Aycan K, Özkul Y. The Effect of Different Programs of Exercise on The Expression of Genes Associated with Endurance and Energy Metabolism. JSSR. Aralık 2021;6(2):482-490. doi:10.25307/jssr.971105
Chicago Akpınar Kocakulak, Neşe, Serpil Taheri, Elif Funda Şener, Kenan Aycan, ve Yusuf Özkul. “The Effect of Different Programs of Exercise on The Expression of Genes Associated With Endurance and Energy Metabolism”. Journal of Sport Sciences Research 6, sy. 2 (Aralık 2021): 482-90. https://doi.org/10.25307/jssr.971105.
EndNote Akpınar Kocakulak N, Taheri S, Şener EF, Aycan K, Özkul Y (01 Aralık 2021) The Effect of Different Programs of Exercise on The Expression of Genes Associated with Endurance and Energy Metabolism. Journal of Sport Sciences Research 6 2 482–490.
IEEE N. Akpınar Kocakulak, S. Taheri, E. F. Şener, K. Aycan, ve Y. Özkul, “The Effect of Different Programs of Exercise on The Expression of Genes Associated with Endurance and Energy Metabolism”, JSSR, c. 6, sy. 2, ss. 482–490, 2021, doi: 10.25307/jssr.971105.
ISNAD Akpınar Kocakulak, Neşe vd. “The Effect of Different Programs of Exercise on The Expression of Genes Associated With Endurance and Energy Metabolism”. Journal of Sport Sciences Research 6/2 (Aralık 2021), 482-490. https://doi.org/10.25307/jssr.971105.
JAMA Akpınar Kocakulak N, Taheri S, Şener EF, Aycan K, Özkul Y. The Effect of Different Programs of Exercise on The Expression of Genes Associated with Endurance and Energy Metabolism. JSSR. 2021;6:482–490.
MLA Akpınar Kocakulak, Neşe vd. “The Effect of Different Programs of Exercise on The Expression of Genes Associated With Endurance and Energy Metabolism”. Journal of Sport Sciences Research, c. 6, sy. 2, 2021, ss. 482-90, doi:10.25307/jssr.971105.
Vancouver Akpınar Kocakulak N, Taheri S, Şener EF, Aycan K, Özkul Y. The Effect of Different Programs of Exercise on The Expression of Genes Associated with Endurance and Energy Metabolism. JSSR. 2021;6(2):482-90.

26355    18836       18837       8748

Dergi indirme İstatistikleri 

indir.png