Araştırma Makalesi
BibTex RIS Kaynak Göster

Raspberry Pi 4 ile Sürücü Yorgunluk Tespiti ve Uyarı Sistemi

Yıl 2020, , 13 - 18, 20.07.2020
https://doi.org/10.5281/zenodo.3902907

Öz

Sürücü Yorgunluk tespit sistemleri, sürücüyü izleyerek, normal sürüş alışkanlığı dışında farklı tutum algılanması durumunda bunun yorgunluktan kaynaklandığını tespit ederek, sürücünün yolculuğa ara verilmesi gerektiğini uyarmaktadır. Bu sayede, sürücüye doğru karar vermesi konusunda destek sağlamaktadır. Bu çalışmada, sürücü yorgunluk tespiti ve uyarı sistemi ile sürücünün yorgunluğundan kaynaklanan trafik kazalarının uyarıcı bir sistemle engellenmesi amaçlanmıştır. Sistem, sürücünün göz hareketlerindeki değişimleri gerçek zamanlı olarak analiz etmekte ve gerektiğinde sürücüye uyarı vermektedir. Bu sayede daha güvenli bir sürüş sağlanacaktır.

Önerilen sistem sürücünün yorgunluğunu tespit etmek için çeşitli aşamalardan oluşmaktadır. Sürücünün yüz ve göz bölgelerinin tespit edilip her kare işlendikten sonra göz kırpma yüzdesi hesaplanarak sürücü yorgunluğu tespit edilmiştir. Sistemde gömülü sistem olarak Raspbian işletim sistemine sahip Raspberry Pi 4 kullanılmıştır ve OpenCV kütüphanesinden yararlanılmıştır.

Kaynakça

  • T. D’Orazio, M. Leo, C. Guaragnella, A. Distante, A visual approach for driver inattention detection. Pattern Recog. 2007, 40, 2341–2355.
  • M. Patel, S.K.L. Lal, D. Kavanagh, P. Rossiter, Applying Neural Network Analysis On Heart Rate Variability Data To Assess Driver Fatigue. Exp. Syst. Appl. 2011, 38, 7235–7242.
  • L.M. Bergasa, J. Nuevo, M.A. Sotelo, R. Barea, M.E. Lopez, Real-Time System For Monitoring Driver Vigilance. IEEE Trans. Intell. Transport. Syst. 2006, 7, 63–77.
  • Z. Zhang, J. Zhang, A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue. J. Contr. Theor. Appl. 2010, 8, 181–188.
  • L. Pauly and D. Sankar, “Detection of drowsiness based on hog features and svm classifiers,” in 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 181–186, Nov 2015.
  • A. Ercil, G. Littlewort, M. Bartlett, J. Movellan, Human Computer Interaction. Vol. 4796. Springer; Berlin, Germany: 2007. Drowsy driver detection through facial movement analysis; pp. 6–18.181–18.
  • T. Danisman, I.M. Bilasco, C. Djeraba and N. Ihaddadene, 2010 “Drowsy driver detection system using eye blink patterns.” 2010 Int. Conf. Mach. Web Intell. ICMWI 2010 – Proc., pp. 230–233.
  • M. Flores, J. Armingol, A. de la Escalera, Driver drowsiness warning system using visual information for both diurnal and nocturnal illumination conditions.EURASIP J. Adv. Signal Process.,2010, 438205.
  • S. Mehta, S. Dadhich, S. Gumber and A.Jadhav Bhatt, “Real-Time Driver Drowsiness Detection System Using Eye Aspect Ratio and Eye ClosureRatio,”SSRN Electronic Journal, pp. 1333–1339, 2019.
  • T. Soukupova and J. Cech. Real-Time Eye Blink Detection using Facial Landmarks. Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University in Prague. Prague,2016.
  • J. W. Baek, B.-g. Han, K.-j. Kim, Y.-s. Chung, and S.-i. Lee, “Real-timeDrowsiness Detection Algorithm for Driver State Monitoring Systems,”2018 Tenth International Conference on Ubiquitous and Future Net-works (ICUFN), pp. 73–75, 2018.

Driver Fatigue Detection and Warning System with Raspberry Pi 4

Yıl 2020, , 13 - 18, 20.07.2020
https://doi.org/10.5281/zenodo.3902907

Öz

Driver Fatigue detection systems, by monitoring the driver, warns the driver that traveling should be interrupted by detecting that this is caused by fatigue if a different attitude other than normal driving habit is detected. In this way, it provides support to the driver in making the right decision. In this study, it was aimed to prevent traffic accidents caused by driver fatigue detection and warning system with a warning system. The system analyzes the changes in the eye movements of the driver in real time and warns the driver when necessary.

The proposed system consists of several steps to detect the driver's fatigue. Driver fatigue was determined by determining the face and eyes of the driver and calculating the blink percentage after each frame was processed. Raspberry Pi 4 with Raspbian operating system was used as an embedded system and OpenCV library was used.

Kaynakça

  • T. D’Orazio, M. Leo, C. Guaragnella, A. Distante, A visual approach for driver inattention detection. Pattern Recog. 2007, 40, 2341–2355.
  • M. Patel, S.K.L. Lal, D. Kavanagh, P. Rossiter, Applying Neural Network Analysis On Heart Rate Variability Data To Assess Driver Fatigue. Exp. Syst. Appl. 2011, 38, 7235–7242.
  • L.M. Bergasa, J. Nuevo, M.A. Sotelo, R. Barea, M.E. Lopez, Real-Time System For Monitoring Driver Vigilance. IEEE Trans. Intell. Transport. Syst. 2006, 7, 63–77.
  • Z. Zhang, J. Zhang, A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue. J. Contr. Theor. Appl. 2010, 8, 181–188.
  • L. Pauly and D. Sankar, “Detection of drowsiness based on hog features and svm classifiers,” in 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 181–186, Nov 2015.
  • A. Ercil, G. Littlewort, M. Bartlett, J. Movellan, Human Computer Interaction. Vol. 4796. Springer; Berlin, Germany: 2007. Drowsy driver detection through facial movement analysis; pp. 6–18.181–18.
  • T. Danisman, I.M. Bilasco, C. Djeraba and N. Ihaddadene, 2010 “Drowsy driver detection system using eye blink patterns.” 2010 Int. Conf. Mach. Web Intell. ICMWI 2010 – Proc., pp. 230–233.
  • M. Flores, J. Armingol, A. de la Escalera, Driver drowsiness warning system using visual information for both diurnal and nocturnal illumination conditions.EURASIP J. Adv. Signal Process.,2010, 438205.
  • S. Mehta, S. Dadhich, S. Gumber and A.Jadhav Bhatt, “Real-Time Driver Drowsiness Detection System Using Eye Aspect Ratio and Eye ClosureRatio,”SSRN Electronic Journal, pp. 1333–1339, 2019.
  • T. Soukupova and J. Cech. Real-Time Eye Blink Detection using Facial Landmarks. Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University in Prague. Prague,2016.
  • J. W. Baek, B.-g. Han, K.-j. Kim, Y.-s. Chung, and S.-i. Lee, “Real-timeDrowsiness Detection Algorithm for Driver State Monitoring Systems,”2018 Tenth International Conference on Ubiquitous and Future Net-works (ICUFN), pp. 73–75, 2018.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka
Bölüm Araştırma Makaleleri
Yazarlar

Ayşenur Şahin 0000-0003-0567-2722

Sevcan Çil

Ayhan İstanbullu

Yayımlanma Tarihi 20 Temmuz 2020
Gönderilme Tarihi 8 Haziran 2020
Kabul Tarihi 18 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Şahin, A., Çil, S., & İstanbullu, A. (2020). Raspberry Pi 4 ile Sürücü Yorgunluk Tespiti ve Uyarı Sistemi. Journal of Science, Technology and Engineering Research, 1(1), 13-18. https://doi.org/10.5281/zenodo.3902907
AMA Şahin A, Çil S, İstanbullu A. Raspberry Pi 4 ile Sürücü Yorgunluk Tespiti ve Uyarı Sistemi. JSTER. Temmuz 2020;1(1):13-18. doi:10.5281/zenodo.3902907
Chicago Şahin, Ayşenur, Sevcan Çil, ve Ayhan İstanbullu. “Raspberry Pi 4 Ile Sürücü Yorgunluk Tespiti Ve Uyarı Sistemi”. Journal of Science, Technology and Engineering Research 1, sy. 1 (Temmuz 2020): 13-18. https://doi.org/10.5281/zenodo.3902907.
EndNote Şahin A, Çil S, İstanbullu A (01 Temmuz 2020) Raspberry Pi 4 ile Sürücü Yorgunluk Tespiti ve Uyarı Sistemi. Journal of Science, Technology and Engineering Research 1 1 13–18.
IEEE A. Şahin, S. Çil, ve A. İstanbullu, “Raspberry Pi 4 ile Sürücü Yorgunluk Tespiti ve Uyarı Sistemi”, JSTER, c. 1, sy. 1, ss. 13–18, 2020, doi: 10.5281/zenodo.3902907.
ISNAD Şahin, Ayşenur vd. “Raspberry Pi 4 Ile Sürücü Yorgunluk Tespiti Ve Uyarı Sistemi”. Journal of Science, Technology and Engineering Research 1/1 (Temmuz 2020), 13-18. https://doi.org/10.5281/zenodo.3902907.
JAMA Şahin A, Çil S, İstanbullu A. Raspberry Pi 4 ile Sürücü Yorgunluk Tespiti ve Uyarı Sistemi. JSTER. 2020;1:13–18.
MLA Şahin, Ayşenur vd. “Raspberry Pi 4 Ile Sürücü Yorgunluk Tespiti Ve Uyarı Sistemi”. Journal of Science, Technology and Engineering Research, c. 1, sy. 1, 2020, ss. 13-18, doi:10.5281/zenodo.3902907.
Vancouver Şahin A, Çil S, İstanbullu A. Raspberry Pi 4 ile Sürücü Yorgunluk Tespiti ve Uyarı Sistemi. JSTER. 2020;1(1):13-8.
Dergide yayınlanan çalışmalar
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) Uluslararası Lisansı ile lisanslanmıştır.
by-nc-nd.png

Free counters!