Araştırma Makalesi
BibTex RIS Kaynak Göster

CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES

Yıl 2018, Cilt: 1 Sayı: 2, 116 - 129, 31.07.2018

Öz

In this paper, we construct an integer-valued degree function in a suitable classes of mappings of monotone type, using a complementary system formed of Generalized Sobolev Spaces in which the variable exponent p in P(log)(Omega) satisfy 1 < p'-  < p'+ < + ifinity, where  Omega is in RN is open and bounded.
This kind of spaces are not refexives

Kaynakça

  • Berkovits, J.: On the degree theory for nonlinear mappings of monotone type. -Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 58,1986.
  • Berkovits, J., and V. Mustonen: On topological degree for mappings of monotone type. Nonlinear Anal. 10,1986,1373-1383.
  • Berkovits, J., and V. Mustonen: Nonlinear mappings of monotone type I. Classification and degree theory. Preprint No 2/88, Mathematics, University of Oulu.
  • Brouwer, L. E. J: Uber Abbildung von Mannigfaltigkeiten. - Math. Ann. 71, 1912 ,97-115.
  • F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983) 139.
  • Browder, F E: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773 (1983).
  • Deimling, K: Nonlinar functional analysis. Springer, Berlin (1985).
  • L. Dingien, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
  • L. Fuhrer, Ein elementarer analytischer Beweis zur Eindeutigkeit des A bbildungsgrades im Rn, Math. Nachr. 54 (1972), 259-267.
  • J. P. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
  • O. Kovacik and J. Rakosnik: On spaces Lp(x) and W1;p(x), Czechoslovak Math. J. 41 (1991), 592-618.
  • Leray, J, Schauder, J: Topologie et equationes fonctionnelles. Ann. Sci. Ec. Norm. Super. 51, 45-78 (1934).
  • Landes, R., and V. Mustonen: Pseudo-monotne mappings in Orlicz-Sobolev spaces and nonlinear boundary value problems on unbounded domains. J. Math. Anal. 88,1982,25-36.
  • Narici, L., and E. Beckenstein: Topological vector spaces. -Marcel Dekker, Inc., New York and Basel, 1985.
  • Skrypnik, I V. : Nonlinear higher order elliptic equations. Naukova Dumka, Kiev (1973)(in Russian).
  • Skrypnik,IV: Methods for analysis of nonlinear elliptic bondary value problems. Amer. Math. Soc. Transl., Ser. II, vol. 139. AMS, Providence(1994).
  • H. Amann and S. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-5.
  • Zeidler, E: Nonlinear functional analysis and its applications I: Fixed-Point-Theorems.Springer, New York (1985).

Yıl 2018, Cilt: 1 Sayı: 2, 116 - 129, 31.07.2018

Öz

Kaynakça

  • Berkovits, J.: On the degree theory for nonlinear mappings of monotone type. -Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 58,1986.
  • Berkovits, J., and V. Mustonen: On topological degree for mappings of monotone type. Nonlinear Anal. 10,1986,1373-1383.
  • Berkovits, J., and V. Mustonen: Nonlinear mappings of monotone type I. Classification and degree theory. Preprint No 2/88, Mathematics, University of Oulu.
  • Brouwer, L. E. J: Uber Abbildung von Mannigfaltigkeiten. - Math. Ann. 71, 1912 ,97-115.
  • F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983) 139.
  • Browder, F E: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773 (1983).
  • Deimling, K: Nonlinar functional analysis. Springer, Berlin (1985).
  • L. Dingien, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
  • L. Fuhrer, Ein elementarer analytischer Beweis zur Eindeutigkeit des A bbildungsgrades im Rn, Math. Nachr. 54 (1972), 259-267.
  • J. P. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
  • O. Kovacik and J. Rakosnik: On spaces Lp(x) and W1;p(x), Czechoslovak Math. J. 41 (1991), 592-618.
  • Leray, J, Schauder, J: Topologie et equationes fonctionnelles. Ann. Sci. Ec. Norm. Super. 51, 45-78 (1934).
  • Landes, R., and V. Mustonen: Pseudo-monotne mappings in Orlicz-Sobolev spaces and nonlinear boundary value problems on unbounded domains. J. Math. Anal. 88,1982,25-36.
  • Narici, L., and E. Beckenstein: Topological vector spaces. -Marcel Dekker, Inc., New York and Basel, 1985.
  • Skrypnik, I V. : Nonlinear higher order elliptic equations. Naukova Dumka, Kiev (1973)(in Russian).
  • Skrypnik,IV: Methods for analysis of nonlinear elliptic bondary value problems. Amer. Math. Soc. Transl., Ser. II, vol. 139. AMS, Providence(1994).
  • H. Amann and S. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-5.
  • Zeidler, E: Nonlinear functional analysis and its applications I: Fixed-Point-Theorems.Springer, New York (1985).
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Mustapha Ait Hammou

Elhoussine Azroul

Gönderilme Tarihi 15 Mayıs 2018
Kabul Tarihi 5 Ağustos 2018
Yayımlanma Tarihi 31 Temmuz 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Ait Hammou, M., & Azroul, E. (2018). CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. Journal of Universal Mathematics, 1(2), 116-129.
AMA Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. Temmuz 2018;1(2):116-129.
Chicago Ait Hammou, Mustapha, ve Elhoussine Azroul. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics 1, sy. 2 (Temmuz 2018): 116-29.
EndNote Ait Hammou M, Azroul E (01 Temmuz 2018) CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. Journal of Universal Mathematics 1 2 116–129.
IEEE M. Ait Hammou ve E. Azroul, “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”, JUM, c. 1, sy. 2, ss. 116–129, 2018.
ISNAD Ait Hammou, Mustapha - Azroul, Elhoussine. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics 1/2 (Temmuz2018), 116-129.
JAMA Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. 2018;1:116–129.
MLA Ait Hammou, Mustapha ve Elhoussine Azroul. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics, c. 1, sy. 2, 2018, ss. 116-29.
Vancouver Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. 2018;1(2):116-29.