S. Abbaszadeh, and A. Ebadian (2018). Nonlinear integrals and Hadamard-type inequalities,
Soft Computing, 22 (9) (2018), 2843-2849.
M. Alomari and M. Darus, On the Hadamard's inequality for log-convex functions on the
coordinates, J. Ineq. Appl. 2009 (2009), Article ID 283147, 13 pp.
M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for
functions whose second derivatives absolute values are quasi-convex, Tamkang. J. Math. 41(4)
(2010) 353-359.
M. Alomari, M. Darus and U.S. Kirmaci, Requnements of Hadamard-type inequalities for
quasi-convex functions with applications to trapezoidal formula and to special means, Comp.
Math. Appl. 59 (2010) 225-232.
M. U. Awan, M. A. Noor, K. I. Noor and F. Safdar, On strongly generalized convex functions,
Filomat 31(18) (2017) 5783-5790.
ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX
The aim of this paper, is to establish some new inequalities of
Hermite-Hadamard type by using (mü 1; mü 2)-strongly convex function via whose
nth derivatives in absolute value at certain powers. Moreover, we also consider
their relevances for other related known results.
S. Abbaszadeh, and A. Ebadian (2018). Nonlinear integrals and Hadamard-type inequalities,
Soft Computing, 22 (9) (2018), 2843-2849.
M. Alomari and M. Darus, On the Hadamard's inequality for log-convex functions on the
coordinates, J. Ineq. Appl. 2009 (2009), Article ID 283147, 13 pp.
M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamard type for
functions whose second derivatives absolute values are quasi-convex, Tamkang. J. Math. 41(4)
(2010) 353-359.
M. Alomari, M. Darus and U.S. Kirmaci, Requnements of Hadamard-type inequalities for
quasi-convex functions with applications to trapezoidal formula and to special means, Comp.
Math. Appl. 59 (2010) 225-232.
M. U. Awan, M. A. Noor, K. I. Noor and F. Safdar, On strongly generalized convex functions,
Filomat 31(18) (2017) 5783-5790.
Kılınç Yıldırım, S., & Yıldırım, H. (2021). ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. Journal of Universal Mathematics, 4(2), 230-240. https://doi.org/10.33773/jum.945748
AMA
Kılınç Yıldırım S, Yıldırım H. ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. JUM. Temmuz 2021;4(2):230-240. doi:10.33773/jum.945748
Chicago
Kılınç Yıldırım, Seda, ve Hüseyin Yıldırım. “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE NTH DERIVATIVES ARE (mü 1; Mü 2)- STRONGLY CONVEX”. Journal of Universal Mathematics 4, sy. 2 (Temmuz 2021): 230-40. https://doi.org/10.33773/jum.945748.
EndNote
Kılınç Yıldırım S, Yıldırım H (01 Temmuz 2021) ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. Journal of Universal Mathematics 4 2 230–240.
IEEE
S. Kılınç Yıldırım ve H. Yıldırım, “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX”, JUM, c. 4, sy. 2, ss. 230–240, 2021, doi: 10.33773/jum.945748.
ISNAD
Kılınç Yıldırım, Seda - Yıldırım, Hüseyin. “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE NTH DERIVATIVES ARE (mü 1; Mü 2)- STRONGLY CONVEX”. Journal of Universal Mathematics 4/2 (Temmuz 2021), 230-240. https://doi.org/10.33773/jum.945748.
JAMA
Kılınç Yıldırım S, Yıldırım H. ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. JUM. 2021;4:230–240.
MLA
Kılınç Yıldırım, Seda ve Hüseyin Yıldırım. “ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE NTH DERIVATIVES ARE (mü 1; Mü 2)- STRONGLY CONVEX”. Journal of Universal Mathematics, c. 4, sy. 2, 2021, ss. 230-4, doi:10.33773/jum.945748.
Vancouver
Kılınç Yıldırım S, Yıldırım H. ON SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE nTH DERIVATIVES ARE (mü 1; mü 2)- STRONGLY CONVEX. JUM. 2021;4(2):230-4.