Araştırma Makalesi
BibTex RIS Kaynak Göster

FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS

Yıl 2018, Cilt: 1 Sayı: 2, 148 - 154, 31.07.2018

Öz

In this paper we introduce a new class of fuzzy contractive mapping and we show that such a class unify and generalize several existing concepts in the literature. We establish xed point theorem for such mappings in complete strong fuzzy metric spaces and we give an illustrative example

Kaynakça

  • M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1988) 385-389.
  • M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc. 37 (1962) 74-79.
  • A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994) 395-399.
  • V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245-252.
  • V. Gregori, S. Morillas, A. Sapena, Examples of fuzzy metrics and applications, FuzzyS ets and Systems 170 (2011) 95-111.
  • V. Gregori, J.-J. Minana, Some remarks on fuzzy contractive mappings, Fuzzy Sets Syst. 251 (2014) 101-103.
  • V. Radu, Some remarks on the probabilistic contractions on fuzzy Menger spaces, Automat. Comput. Appl. Math. 11 (2002) 125-131.
  • B. Schweizer, A. Sklar, Statistical metric spaces, Pacific. J. Math. 10 (1960) 313-334.
  • D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007) 915-921.
  • D. Mihet, Fuzzy \psi-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008) 739-744.
  • D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 222 (2013) 108-114.
  • I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 15 (1975) 326-334.
  • Ciric, L.: Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces. Chaos Solitons Fractals 42, 146-154 (2009).
  • Shen, Y., Qiu, D., Chen,W.: Fixed point theorems in fuzzy metric spaces. Appl. Math. Lett. 25, 138-141 (2012).
  • Roldan, A., Martinez, J., Roldan, C., Cho,Y.J.: Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets Syst. 251, 71-82 (2014).
Yıl 2018, Cilt: 1 Sayı: 2, 148 - 154, 31.07.2018

Öz

Kaynakça

  • M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1988) 385-389.
  • M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc. 37 (1962) 74-79.
  • A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994) 395-399.
  • V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002), 245-252.
  • V. Gregori, S. Morillas, A. Sapena, Examples of fuzzy metrics and applications, FuzzyS ets and Systems 170 (2011) 95-111.
  • V. Gregori, J.-J. Minana, Some remarks on fuzzy contractive mappings, Fuzzy Sets Syst. 251 (2014) 101-103.
  • V. Radu, Some remarks on the probabilistic contractions on fuzzy Menger spaces, Automat. Comput. Appl. Math. 11 (2002) 125-131.
  • B. Schweizer, A. Sklar, Statistical metric spaces, Pacific. J. Math. 10 (1960) 313-334.
  • D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007) 915-921.
  • D. Mihet, Fuzzy \psi-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems 159 (2008) 739-744.
  • D. Wardowski, Fuzzy contractive mappings and fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 222 (2013) 108-114.
  • I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 15 (1975) 326-334.
  • Ciric, L.: Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces. Chaos Solitons Fractals 42, 146-154 (2009).
  • Shen, Y., Qiu, D., Chen,W.: Fixed point theorems in fuzzy metric spaces. Appl. Math. Lett. 25, 138-141 (2012).
  • Roldan, A., Martinez, J., Roldan, C., Cho,Y.J.: Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets Syst. 251, 71-82 (2014).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Said Melliani 0000-0002-5150-1185

Abdelahamid Moussaoui Bu kişi benim

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 15 Mayıs 2018
Kabul Tarihi 5 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Melliani, S., & Moussaoui, A. (2018). FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS. Journal of Universal Mathematics, 1(2), 148-154.
AMA Melliani S, Moussaoui A. FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS. JUM. Temmuz 2018;1(2):148-154.
Chicago Melliani, Said, ve Abdelahamid Moussaoui. “FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS”. Journal of Universal Mathematics 1, sy. 2 (Temmuz 2018): 148-54.
EndNote Melliani S, Moussaoui A (01 Temmuz 2018) FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS. Journal of Universal Mathematics 1 2 148–154.
IEEE S. Melliani ve A. Moussaoui, “FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS”, JUM, c. 1, sy. 2, ss. 148–154, 2018.
ISNAD Melliani, Said - Moussaoui, Abdelahamid. “FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS”. Journal of Universal Mathematics 1/2 (Temmuz 2018), 148-154.
JAMA Melliani S, Moussaoui A. FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS. JUM. 2018;1:148–154.
MLA Melliani, Said ve Abdelahamid Moussaoui. “FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS”. Journal of Universal Mathematics, c. 1, sy. 2, 2018, ss. 148-54.
Vancouver Melliani S, Moussaoui A. FIXED POINT THEOREM USING A NEW CLASS OF FUZZY CONTRACTIVE MAPPINGS. JUM. 2018;1(2):148-54.