Araştırma Makalesi
BibTex RIS Kaynak Göster

CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES

Yıl 2018, Cilt: 1 Sayı: 2, 116 - 129, 31.07.2018

Öz

In this paper, we construct an integer-valued degree function in a suitable classes of mappings of monotone type, using a complementary system formed of Generalized Sobolev Spaces in which the variable exponent p in P(log)(Omega) satisfy 1 < p'-  < p'+ < + ifinity, where  Omega is in RN is open and bounded.
This kind of spaces are not refexives

Kaynakça

  • Berkovits, J.: On the degree theory for nonlinear mappings of monotone type. -Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 58,1986.
  • Berkovits, J., and V. Mustonen: On topological degree for mappings of monotone type. Nonlinear Anal. 10,1986,1373-1383.
  • Berkovits, J., and V. Mustonen: Nonlinear mappings of monotone type I. Classification and degree theory. Preprint No 2/88, Mathematics, University of Oulu.
  • Brouwer, L. E. J: Uber Abbildung von Mannigfaltigkeiten. - Math. Ann. 71, 1912 ,97-115.
  • F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983) 139.
  • Browder, F E: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773 (1983).
  • Deimling, K: Nonlinar functional analysis. Springer, Berlin (1985).
  • L. Dingien, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
  • L. Fuhrer, Ein elementarer analytischer Beweis zur Eindeutigkeit des A bbildungsgrades im Rn, Math. Nachr. 54 (1972), 259-267.
  • J. P. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
  • O. Kovacik and J. Rakosnik: On spaces Lp(x) and W1;p(x), Czechoslovak Math. J. 41 (1991), 592-618.
  • Leray, J, Schauder, J: Topologie et equationes fonctionnelles. Ann. Sci. Ec. Norm. Super. 51, 45-78 (1934).
  • Landes, R., and V. Mustonen: Pseudo-monotne mappings in Orlicz-Sobolev spaces and nonlinear boundary value problems on unbounded domains. J. Math. Anal. 88,1982,25-36.
  • Narici, L., and E. Beckenstein: Topological vector spaces. -Marcel Dekker, Inc., New York and Basel, 1985.
  • Skrypnik, I V. : Nonlinear higher order elliptic equations. Naukova Dumka, Kiev (1973)(in Russian).
  • Skrypnik,IV: Methods for analysis of nonlinear elliptic bondary value problems. Amer. Math. Soc. Transl., Ser. II, vol. 139. AMS, Providence(1994).
  • H. Amann and S. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-5.
  • Zeidler, E: Nonlinear functional analysis and its applications I: Fixed-Point-Theorems.Springer, New York (1985).
Yıl 2018, Cilt: 1 Sayı: 2, 116 - 129, 31.07.2018

Öz

Kaynakça

  • Berkovits, J.: On the degree theory for nonlinear mappings of monotone type. -Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 58,1986.
  • Berkovits, J., and V. Mustonen: On topological degree for mappings of monotone type. Nonlinear Anal. 10,1986,1373-1383.
  • Berkovits, J., and V. Mustonen: Nonlinear mappings of monotone type I. Classification and degree theory. Preprint No 2/88, Mathematics, University of Oulu.
  • Brouwer, L. E. J: Uber Abbildung von Mannigfaltigkeiten. - Math. Ann. 71, 1912 ,97-115.
  • F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983) 139.
  • Browder, F E: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773 (1983).
  • Deimling, K: Nonlinar functional analysis. Springer, Berlin (1985).
  • L. Dingien, P. Harjulehto, P. Hasto, M. Ruzicka: Lebesgue and Sobolev Spaces with Variable Exponents, Springer (2011).
  • L. Fuhrer, Ein elementarer analytischer Beweis zur Eindeutigkeit des A bbildungsgrades im Rn, Math. Nachr. 54 (1972), 259-267.
  • J. P. Gossez; Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc. 190 (1974), 163-205.
  • O. Kovacik and J. Rakosnik: On spaces Lp(x) and W1;p(x), Czechoslovak Math. J. 41 (1991), 592-618.
  • Leray, J, Schauder, J: Topologie et equationes fonctionnelles. Ann. Sci. Ec. Norm. Super. 51, 45-78 (1934).
  • Landes, R., and V. Mustonen: Pseudo-monotne mappings in Orlicz-Sobolev spaces and nonlinear boundary value problems on unbounded domains. J. Math. Anal. 88,1982,25-36.
  • Narici, L., and E. Beckenstein: Topological vector spaces. -Marcel Dekker, Inc., New York and Basel, 1985.
  • Skrypnik, I V. : Nonlinear higher order elliptic equations. Naukova Dumka, Kiev (1973)(in Russian).
  • Skrypnik,IV: Methods for analysis of nonlinear elliptic bondary value problems. Amer. Math. Soc. Transl., Ser. II, vol. 139. AMS, Providence(1994).
  • H. Amann and S. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-5.
  • Zeidler, E: Nonlinear functional analysis and its applications I: Fixed-Point-Theorems.Springer, New York (1985).
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Mustapha Ait Hammou

Elhoussine Azroul

Yayımlanma Tarihi 31 Temmuz 2018
Gönderilme Tarihi 15 Mayıs 2018
Kabul Tarihi 5 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Ait Hammou, M., & Azroul, E. (2018). CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. Journal of Universal Mathematics, 1(2), 116-129.
AMA Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. Temmuz 2018;1(2):116-129.
Chicago Ait Hammou, Mustapha, ve Elhoussine Azroul. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics 1, sy. 2 (Temmuz 2018): 116-29.
EndNote Ait Hammou M, Azroul E (01 Temmuz 2018) CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. Journal of Universal Mathematics 1 2 116–129.
IEEE M. Ait Hammou ve E. Azroul, “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”, JUM, c. 1, sy. 2, ss. 116–129, 2018.
ISNAD Ait Hammou, Mustapha - Azroul, Elhoussine. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics 1/2 (Temmuz 2018), 116-129.
JAMA Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. 2018;1:116–129.
MLA Ait Hammou, Mustapha ve Elhoussine Azroul. “CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES”. Journal of Universal Mathematics, c. 1, sy. 2, 2018, ss. 116-29.
Vancouver Ait Hammou M, Azroul E. CONSTRUCTION OF A TOPOLOGICAL DEGREE THEORY IN GENERALIZED SOBOLEV SPACES. JUM. 2018;1(2):116-29.