In this paper,for any arbitrary two prime numbers $p$ and $q$ the relationship between the corresponding arithmetic functions $(a_p(n))$ and $(a_q(n))$ are investigated.~Furthermore, the general formula for statistical density of all sets on which the two arithmetic functions have the same value also established.
\bibitem{1} Fast, H. , (1951) Sur la convergence statistique., \textit{Colloq.Math}, VOL, 2, 241--244.
\bibitem{2} Schoenberg, I. J., (1959) The integrability of certain functions and related summability methods, matrix characterization of statistical convergence, \textit{Amer.Math.}, VOL, 66, 361--375.
\bibitem{3} Zygmund, A. (1979) \textit{Trigonometric series}, 2nd., Ed. Vol. II, Cambridge Univ. press, London and New York.
\bibitem{4} {\v{S}}al{\'a}t, T., (1994) On the function $ a_{p},~p^{a_{p}(n)} \backslash\backslash ~ n ~(n>1)$ , \textit{Mathematica Slovaca}, VOL, 44, Num, 2 143--151.
\bibitem{5} Feh{\'e}ra, Zolt{\'a}n and L{\'a}szl{\'o}a, B{\'e}la and Ma{\v{c}}ajb, Martin and {\v{S}}al{\'a}tb, Tibor, 2006,Remarks on arithmetical functions $ap (n)$, $\gamma$ (n), $\tau$ (n),Annales Mathematicae et Informaticae,Vol 33,35-43
\bibitem{6} Abdu Awel and M. K\"{u}\c{c}\"{u}kaslan ,A Note On Limit And Cluster Points Of The Arithmetical Functions,J.Indones.Math.Soc(under review)
\bibitem{10} Milan, P. (2017) \textit{DENSITY AND RELATED TOPICS}, Mathematics Institute slovak Acadamic of Sciences
\bibitem{1} Fast, H. , (1951) Sur la convergence statistique., \textit{Colloq.Math}, VOL, 2, 241--244.
\bibitem{2} Schoenberg, I. J., (1959) The integrability of certain functions and related summability methods, matrix characterization of statistical convergence, \textit{Amer.Math.}, VOL, 66, 361--375.
\bibitem{3} Zygmund, A. (1979) \textit{Trigonometric series}, 2nd., Ed. Vol. II, Cambridge Univ. press, London and New York.
\bibitem{4} {\v{S}}al{\'a}t, T., (1994) On the function $ a_{p},~p^{a_{p}(n)} \backslash\backslash ~ n ~(n>1)$ , \textit{Mathematica Slovaca}, VOL, 44, Num, 2 143--151.
\bibitem{5} Feh{\'e}ra, Zolt{\'a}n and L{\'a}szl{\'o}a, B{\'e}la and Ma{\v{c}}ajb, Martin and {\v{S}}al{\'a}tb, Tibor, 2006,Remarks on arithmetical functions $ap (n)$, $\gamma$ (n), $\tau$ (n),Annales Mathematicae et Informaticae,Vol 33,35-43
\bibitem{6} Abdu Awel and M. K\"{u}\c{c}\"{u}kaslan ,A Note On Limit And Cluster Points Of The Arithmetical Functions,J.Indones.Math.Soc(under review)
\bibitem{10} Milan, P. (2017) \textit{DENSITY AND RELATED TOPICS}, Mathematics Institute slovak Acadamic of Sciences
Adem, A. A. (2020). REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$. Journal of Universal Mathematics, 3(2), 131-136. https://doi.org/10.33773/jum.637104
AMA
Adem AA. REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$. JUM. Temmuz 2020;3(2):131-136. doi:10.33773/jum.637104
Chicago
Adem, Abdu Awel. “REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$”. Journal of Universal Mathematics 3, sy. 2 (Temmuz 2020): 131-36. https://doi.org/10.33773/jum.637104.
EndNote
Adem AA (01 Temmuz 2020) REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$. Journal of Universal Mathematics 3 2 131–136.
IEEE
A. A. Adem, “REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$”, JUM, c. 3, sy. 2, ss. 131–136, 2020, doi: 10.33773/jum.637104.
ISNAD
Adem, Abdu Awel. “REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$”. Journal of Universal Mathematics 3/2 (Temmuz 2020), 131-136. https://doi.org/10.33773/jum.637104.
JAMA
Adem AA. REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$. JUM. 2020;3:131–136.
MLA
Adem, Abdu Awel. “REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$”. Journal of Universal Mathematics, c. 3, sy. 2, 2020, ss. 131-6, doi:10.33773/jum.637104.
Vancouver
Adem AA. REMARKS ON THE ARITHMETICAL FUNCTION $a_{p}(n)$. JUM. 2020;3(2):131-6.