Araştırma Makalesi
BibTex RIS Kaynak Göster

SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS

Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 31 - 43, 29.12.2024
https://doi.org/10.33773/jum.1504000

Öz

In this paper, we investigate various types of convergence for sequences of functions and examine the relationships among these types. Our findings contribute to a deeper understanding of the structural properties of function sequences and their convergence behaviors.

Kaynakça

  • E. Athanassiadou, A. Boccuto, X. Dimitriou and N. Papanastassiou, Ascoli-type theorems and ideal alpha-convergence, Filomat, Vol.26, No. 2, pp. 397-405 (2012).
  • E. Athanassiadou, C. Papachristodoulos and N. Papanastassiou, alpha and hyper alpha-convergence in function spaces, Q. and A. General Topology, Vol. 33, pp. 1-16 (2015).
  • R. Courant, Ueber eine Eigenschaft der Abbildungsfunktioen bei konformer Abbildung, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 101–109 (1914).
  • R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Analysis Exchange Vol. 29, No. 1, pp. 43–58. (2004).
  • S. Das, A. Ghosh, A Study on statistical versions of convergence of sequences of functions, Mathematica Slovaca, Vol. 72, No.2, pp. 443–458 (2022).
  • A. Ghosh. I-alpha-convergence and I-exhaustiveness of sequences of metric functions. Matematicki Vesnik, Vol.74, No.2, pp. 110-118 (2022).
  • V. Gregoriades, and N. Papanastassiou, The notion of exhaustiveness and Ascoli-type theorems, Topology and its Applications, Vol. 155, No. 10, pp. 1111-1128 (2008).
  • H. Hahn, Theorie der reellen Funktionen, Berlin, 1921.
  • N. Papanastassiou, A note on convergence of sequences of functions, Topology and its Applications, 275:107017 (2020).
  • W. Rudin, Principles of mathematical analysis (Vol. 3). New York: McGraw-hill (1964).
  • H. Schaefer, Stetige Konvergenz in allgemeinen topologischen Raumen, Arch. Math, Vol. 6, pp. 423–427 (1955).
  • S. Stoilov, Continuous convergence, Rev. Math. Pures Appl. 4 (1959).
Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 31 - 43, 29.12.2024
https://doi.org/10.33773/jum.1504000

Öz

Kaynakça

  • E. Athanassiadou, A. Boccuto, X. Dimitriou and N. Papanastassiou, Ascoli-type theorems and ideal alpha-convergence, Filomat, Vol.26, No. 2, pp. 397-405 (2012).
  • E. Athanassiadou, C. Papachristodoulos and N. Papanastassiou, alpha and hyper alpha-convergence in function spaces, Q. and A. General Topology, Vol. 33, pp. 1-16 (2015).
  • R. Courant, Ueber eine Eigenschaft der Abbildungsfunktioen bei konformer Abbildung, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 101–109 (1914).
  • R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Analysis Exchange Vol. 29, No. 1, pp. 43–58. (2004).
  • S. Das, A. Ghosh, A Study on statistical versions of convergence of sequences of functions, Mathematica Slovaca, Vol. 72, No.2, pp. 443–458 (2022).
  • A. Ghosh. I-alpha-convergence and I-exhaustiveness of sequences of metric functions. Matematicki Vesnik, Vol.74, No.2, pp. 110-118 (2022).
  • V. Gregoriades, and N. Papanastassiou, The notion of exhaustiveness and Ascoli-type theorems, Topology and its Applications, Vol. 155, No. 10, pp. 1111-1128 (2008).
  • H. Hahn, Theorie der reellen Funktionen, Berlin, 1921.
  • N. Papanastassiou, A note on convergence of sequences of functions, Topology and its Applications, 275:107017 (2020).
  • W. Rudin, Principles of mathematical analysis (Vol. 3). New York: McGraw-hill (1964).
  • H. Schaefer, Stetige Konvergenz in allgemeinen topologischen Raumen, Arch. Math, Vol. 6, pp. 423–427 (1955).
  • S. Stoilov, Continuous convergence, Rev. Math. Pures Appl. 4 (1959).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Reel ve Kompleks Fonksiyonlar
Bölüm Araştırma Makalesi
Yazarlar

Alper Erdem 0000-0001-8429-0612

Tuncay Tunç 0000-0002-3061-7197

Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 24 Haziran 2024
Kabul Tarihi 2 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Kaynak Göster

APA Erdem, A., & Tunç, T. (2024). SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 31-43. https://doi.org/10.33773/jum.1504000
AMA Erdem A, Tunç T. SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. JUM. Aralık 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):31-43. doi:10.33773/jum.1504000
Chicago Erdem, Alper, ve Tuncay Tunç. “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”. Journal of Universal Mathematics 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024): 31-43. https://doi.org/10.33773/jum.1504000.
EndNote Erdem A, Tunç T (01 Aralık 2024) SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 31–43.
IEEE A. Erdem ve T. Tunç, “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”, JUM, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", ss. 31–43, 2024, doi: 10.33773/jum.1504000.
ISNAD Erdem, Alper - Tunç, Tuncay. “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024), 31-43. https://doi.org/10.33773/jum.1504000.
JAMA Erdem A, Tunç T. SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. JUM. 2024;7:31–43.
MLA Erdem, Alper ve Tuncay Tunç. “SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS”. Journal of Universal Mathematics, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, ss. 31-43, doi:10.33773/jum.1504000.
Vancouver Erdem A, Tunç T. SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):31-43.