SOME CONVERGENCE TYPES OF FUNCTION SEQUENCES AND THEIR RELATIONS
Yıl 2024,
Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 31 - 43, 29.12.2024
Alper Erdem
,
Tuncay Tunç
Öz
In this paper, we investigate various types of convergence for sequences of functions and examine the relationships among these types. Our findings contribute to a deeper understanding of the structural properties of function sequences and their convergence behaviors.
Kaynakça
- E. Athanassiadou, A. Boccuto, X. Dimitriou and N. Papanastassiou, Ascoli-type theorems and ideal alpha-convergence, Filomat, Vol.26, No. 2, pp. 397-405 (2012).
- E. Athanassiadou, C. Papachristodoulos and N. Papanastassiou, alpha and hyper alpha-convergence in function spaces, Q. and A. General Topology, Vol. 33, pp. 1-16 (2015).
- R. Courant, Ueber eine Eigenschaft der Abbildungsfunktioen bei konformer Abbildung, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 101–109 (1914).
- R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Analysis Exchange Vol. 29, No. 1, pp. 43–58. (2004).
- S. Das, A. Ghosh, A Study on statistical versions of convergence of sequences of functions, Mathematica Slovaca, Vol. 72, No.2, pp. 443–458 (2022).
- A. Ghosh. I-alpha-convergence and I-exhaustiveness of sequences of metric functions. Matematicki Vesnik, Vol.74, No.2, pp. 110-118 (2022).
- V. Gregoriades, and N. Papanastassiou, The notion of exhaustiveness and Ascoli-type theorems, Topology and its Applications, Vol. 155, No. 10, pp. 1111-1128 (2008).
- H. Hahn, Theorie der reellen Funktionen, Berlin, 1921.
- N. Papanastassiou, A note on convergence of sequences of functions, Topology and its Applications, 275:107017 (2020).
- W. Rudin, Principles of mathematical analysis (Vol. 3). New York: McGraw-hill (1964).
- H. Schaefer, Stetige Konvergenz in allgemeinen topologischen Raumen, Arch. Math, Vol. 6, pp. 423–427 (1955).
- S. Stoilov, Continuous convergence, Rev. Math. Pures Appl. 4 (1959).
Yıl 2024,
Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 31 - 43, 29.12.2024
Alper Erdem
,
Tuncay Tunç
Kaynakça
- E. Athanassiadou, A. Boccuto, X. Dimitriou and N. Papanastassiou, Ascoli-type theorems and ideal alpha-convergence, Filomat, Vol.26, No. 2, pp. 397-405 (2012).
- E. Athanassiadou, C. Papachristodoulos and N. Papanastassiou, alpha and hyper alpha-convergence in function spaces, Q. and A. General Topology, Vol. 33, pp. 1-16 (2015).
- R. Courant, Ueber eine Eigenschaft der Abbildungsfunktioen bei konformer Abbildung, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse : 101–109 (1914).
- R. Das, N. Papanastassiou, Some types of convergence of sequences of real valued functions, Real Analysis Exchange Vol. 29, No. 1, pp. 43–58. (2004).
- S. Das, A. Ghosh, A Study on statistical versions of convergence of sequences of functions, Mathematica Slovaca, Vol. 72, No.2, pp. 443–458 (2022).
- A. Ghosh. I-alpha-convergence and I-exhaustiveness of sequences of metric functions. Matematicki Vesnik, Vol.74, No.2, pp. 110-118 (2022).
- V. Gregoriades, and N. Papanastassiou, The notion of exhaustiveness and Ascoli-type theorems, Topology and its Applications, Vol. 155, No. 10, pp. 1111-1128 (2008).
- H. Hahn, Theorie der reellen Funktionen, Berlin, 1921.
- N. Papanastassiou, A note on convergence of sequences of functions, Topology and its Applications, 275:107017 (2020).
- W. Rudin, Principles of mathematical analysis (Vol. 3). New York: McGraw-hill (1964).
- H. Schaefer, Stetige Konvergenz in allgemeinen topologischen Raumen, Arch. Math, Vol. 6, pp. 423–427 (1955).
- S. Stoilov, Continuous convergence, Rev. Math. Pures Appl. 4 (1959).