Teorik Makale
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 109 - 118, 29.12.2024
https://doi.org/10.33773/jum.1564703

Öz

Kaynakça

  • A.M. Aminpour, Some Results in Asymmetric Metric Spaces, Mathematica Aeterna, Vol. 2,pp.533 - 540,(2012).
  • J.S. Connor, The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis, Vol. 12,pp.47-63,(1988).
  • G. Di Maio, L.D.R. Kocinac, Statistical convergence in topology, Topology and its Applications, Vol. 156, pp.28-45,(2008).
  • D. Doitchinov, On Completeness in Quasi Metric Spaces, Topology and its Applications, Vol. 30,pp.127-148,(1988).
  • R. Dutta, On Quasi b-Metric Space with index k and fixed point results, The Journal of Analysis, Vol. 30, pp.919-940 (2022).
  • H. Fast, Sur la convergence statistique, Communications, Vol. 2., pp.241-244, (1951).
  • R. Filipow, N. Mrozek, I. Reclaw, P. Szuca, Ideal Convergence of Bounded Sequences,The Journal of Symbolic Logic, Vol.72, pp.501-512, (2010).
  • A.R. Freedman, J.J. Sember, Densities and Summability, Journal of Mathematics, Vol.95, pp.293-305,(1981). J.A. Fridy, On statistical convergence,Analysis, Vol.5,pp.1187-1192, (1985).
  • A. Ghosh, A study on convergence of sequences of functions in asymmetric metric spaces using ideals,Novi Sad J. Math, Vol. 53,pp.97-116 ,(2023).
  • A. Ghosh, I*alpha Convergence and I-Exhaustiveness of Sequences of Metric Functions,Matematicki Vesnik Matematiqkıvesnık, Vol.74(2),pp.110-118,(2022).
  • M. İlkhan, E.E. Kara, On statistical convergence in quasi-metric spaces, Demonstratio Mathematica ,Vol.1 ,pp.225-236, (2019).
  • P. Kostyrko, T. Salat, W. Wilczynki, I-convergence, Real Analysis Exchange ,Vol.26 (2), pp.669-686,(2000/2001).
  • B.K. Lahiri, P. Das, I and I-convergence in topological spaces, Mathematica Bohemica, Vol. 130,pp.153-160, (2005).
  • O.O. Otafudu, Maps that preserve left (right) K-Cauchy sequences,Hacettepe Journal of Mathematics and Statistics, Vol. 50 (5), pp.1466-1476,(2021).
  • I.L. Reilly, P.V. Subrahmanyam, M.K. Vamanamurthy, Cauchy Sequences in Quasi-Pseudo-Metric Spaces, Monatshefte fur Mathematik, Vol.93,pp.127-140,(1982).
  • H. Steinhaus, Sur la convergence ordinaine et la convergence asymptotique, Colloquium Mathematicum, Vol.2, pp.73-74,(1951)
  • A. Sahiner, M. Gürdal, T. Yigit, Ideal convergence characterization of the completion of linear n-normed spaces, Computers and Mathematics with Applications, Vol.61, pp.683-689, (2011).

I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE

Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 109 - 118, 29.12.2024
https://doi.org/10.33773/jum.1564703

Öz

In this paper, by considering ideal which is special subfamily of power set of natural numbers I∗-convergence of sequence of functions in asymmetric metric spaces is defined and some results about new concept are given.Obtained results is supported some examples to show differences by the classical ones.

Kaynakça

  • A.M. Aminpour, Some Results in Asymmetric Metric Spaces, Mathematica Aeterna, Vol. 2,pp.533 - 540,(2012).
  • J.S. Connor, The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis, Vol. 12,pp.47-63,(1988).
  • G. Di Maio, L.D.R. Kocinac, Statistical convergence in topology, Topology and its Applications, Vol. 156, pp.28-45,(2008).
  • D. Doitchinov, On Completeness in Quasi Metric Spaces, Topology and its Applications, Vol. 30,pp.127-148,(1988).
  • R. Dutta, On Quasi b-Metric Space with index k and fixed point results, The Journal of Analysis, Vol. 30, pp.919-940 (2022).
  • H. Fast, Sur la convergence statistique, Communications, Vol. 2., pp.241-244, (1951).
  • R. Filipow, N. Mrozek, I. Reclaw, P. Szuca, Ideal Convergence of Bounded Sequences,The Journal of Symbolic Logic, Vol.72, pp.501-512, (2010).
  • A.R. Freedman, J.J. Sember, Densities and Summability, Journal of Mathematics, Vol.95, pp.293-305,(1981). J.A. Fridy, On statistical convergence,Analysis, Vol.5,pp.1187-1192, (1985).
  • A. Ghosh, A study on convergence of sequences of functions in asymmetric metric spaces using ideals,Novi Sad J. Math, Vol. 53,pp.97-116 ,(2023).
  • A. Ghosh, I*alpha Convergence and I-Exhaustiveness of Sequences of Metric Functions,Matematicki Vesnik Matematiqkıvesnık, Vol.74(2),pp.110-118,(2022).
  • M. İlkhan, E.E. Kara, On statistical convergence in quasi-metric spaces, Demonstratio Mathematica ,Vol.1 ,pp.225-236, (2019).
  • P. Kostyrko, T. Salat, W. Wilczynki, I-convergence, Real Analysis Exchange ,Vol.26 (2), pp.669-686,(2000/2001).
  • B.K. Lahiri, P. Das, I and I-convergence in topological spaces, Mathematica Bohemica, Vol. 130,pp.153-160, (2005).
  • O.O. Otafudu, Maps that preserve left (right) K-Cauchy sequences,Hacettepe Journal of Mathematics and Statistics, Vol. 50 (5), pp.1466-1476,(2021).
  • I.L. Reilly, P.V. Subrahmanyam, M.K. Vamanamurthy, Cauchy Sequences in Quasi-Pseudo-Metric Spaces, Monatshefte fur Mathematik, Vol.93,pp.127-140,(1982).
  • H. Steinhaus, Sur la convergence ordinaine et la convergence asymptotique, Colloquium Mathematicum, Vol.2, pp.73-74,(1951)
  • A. Sahiner, M. Gürdal, T. Yigit, Ideal convergence characterization of the completion of linear n-normed spaces, Computers and Mathematics with Applications, Vol.61, pp.683-689, (2011).
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Kadriye Dilan Kolaç 0009-0003-5868-293X

Mehmet Küçükaslan 0000-0002-3183-3123

Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 7 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Kaynak Göster

APA Kolaç, K. D., & Küçükaslan, M. (2024). I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 109-118. https://doi.org/10.33773/jum.1564703
AMA Kolaç KD, Küçükaslan M. I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE. JUM. Aralık 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):109-118. doi:10.33773/jum.1564703
Chicago Kolaç, Kadriye Dilan, ve Mehmet Küçükaslan. “I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE”. Journal of Universal Mathematics 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024): 109-18. https://doi.org/10.33773/jum.1564703.
EndNote Kolaç KD, Küçükaslan M (01 Aralık 2024) I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 109–118.
IEEE K. D. Kolaç ve M. Küçükaslan, “I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE”, JUM, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", ss. 109–118, 2024, doi: 10.33773/jum.1564703.
ISNAD Kolaç, Kadriye Dilan - Küçükaslan, Mehmet. “I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024), 109-118. https://doi.org/10.33773/jum.1564703.
JAMA Kolaç KD, Küçükaslan M. I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE. JUM. 2024;7:109–118.
MLA Kolaç, Kadriye Dilan ve Mehmet Küçükaslan. “I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE”. Journal of Universal Mathematics, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, ss. 109-18, doi:10.33773/jum.1564703.
Vancouver Kolaç KD, Küçükaslan M. I*-CONVERGENCE OF FUNCTION SEQUENCES IN ASYMMETRIC METRIC SPACE. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):109-18.