Araştırma Makalesi
BibTex RIS Kaynak Göster

HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS

Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 102 - 108, 29.12.2024
https://doi.org/10.33773/jum.1564979

Öz

In this paper, we study curvature properties of hemi-slant submanifolds of Lorentzian Kenmotsu space forms. We define Lorentz Kenmotsu space forms and study their curvature properties. We give example for hemi-slant submanifold of Lorentzian Kenmotsu space forms. Finally, the curvature properties of distributions are analyzed and the conditions for Einstein are investigated.

Kaynakça

  • P. Alegre, Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds, Taiwanese Journal of Mathematics, Vol.17, pp.897-910 (2013).
  • N. S. Basavarajappa, C. S. Bagewadi, D. G. Prakasha, Some results on Lorentzian beta Kenmotsu manifolds. Ann. Math. Comp.Sci. Ser, Vol.35, pp.7-14 (2008).
  • R.L. Bishop, B. ONeill, Manifolds of negative curvature, Trans. Amer. Math. Soc., Vol.145, pp.1-50 (1969).
  • S. Dirik, B.Bulut, On the geometry of contact pseudo-slant submanifolds of para beta -Kenmotsu manifolds, Bulletin of the International Mathematical Virtual Institute, Vol.14, No.1, pp.157-168 (2024).
  • S. Dirik, R. Sari, Contact Pseudo-Slant Submanifolds of Lorentzian Para Kenmotsu Manifold, Journal of Engineering Research and Applied Science, Vol.12, No.2, pp.2301-2306 (2023).
  • K. L. Duggal, Speace time manifold and contact Manifolds, Int. J. of math. and mathematical science, Vol.13, pp.545-554 (1990).
  • K. Kenmotsu, A class of almost contact Riemannian manifolds, TohokuMath. J. II Ser., Vol.24, pp.93-103 (1972).
  • M. A. Khan, K. Singh, V. A. Khan, Slant submanifolds of almost LP-contact manifold, Differential Geometry - Dynamical Systems, Vol.12, pp.102-108 (2010).
  • R. Rosca, On Lorentzian Kenmotsu manifolds, Atti Accad. Peloritana Pericolanti Cl. Aci. Fis. Mat. Natur, Vol.69, pp.15-30 (1991).
  • R. Sari, A. Vanli, Slant submanifolds of a Lorentz Kenmotsu manifold. Mediterr. J. Math.,16:129,(2019).
  • R. Sari, I. Unal, Semi-invariant submanifolds a Lorentzian Kenmotsu manifold with semi- symmetric metric connection, Bingol University Journal of Technical Science, Vol.2, No.1, pp.36-42 (2021).
  • R. Sari, S. Dirik, Generic Submanifolds of Para beta Kenmotsu Manifold, Journal of Engineering Research and Applied Science,Vol.12, No.1, pp.2291-2294 (2023).
  • T. Takahashi, Sasakian manifold with pseudo-Riemannian metric,Tohoku Math. J., Vol.21, No.2, pp.271-290 (1969).
  • I. Unal, Generic submanifolds of Lorentzian Para Kenmotsu Manifold, KMU Journal of Engineering and Natural Sciences, Vol.3, No.2, pp.79-85 (2021).
  • I. Unal, A classification of para-Kenmotsu space forms, Palestine Journal of Mathematics, 10(S.I,II), pp.197-203 (2021).
Yıl 2024, Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 102 - 108, 29.12.2024
https://doi.org/10.33773/jum.1564979

Öz

Kaynakça

  • P. Alegre, Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds, Taiwanese Journal of Mathematics, Vol.17, pp.897-910 (2013).
  • N. S. Basavarajappa, C. S. Bagewadi, D. G. Prakasha, Some results on Lorentzian beta Kenmotsu manifolds. Ann. Math. Comp.Sci. Ser, Vol.35, pp.7-14 (2008).
  • R.L. Bishop, B. ONeill, Manifolds of negative curvature, Trans. Amer. Math. Soc., Vol.145, pp.1-50 (1969).
  • S. Dirik, B.Bulut, On the geometry of contact pseudo-slant submanifolds of para beta -Kenmotsu manifolds, Bulletin of the International Mathematical Virtual Institute, Vol.14, No.1, pp.157-168 (2024).
  • S. Dirik, R. Sari, Contact Pseudo-Slant Submanifolds of Lorentzian Para Kenmotsu Manifold, Journal of Engineering Research and Applied Science, Vol.12, No.2, pp.2301-2306 (2023).
  • K. L. Duggal, Speace time manifold and contact Manifolds, Int. J. of math. and mathematical science, Vol.13, pp.545-554 (1990).
  • K. Kenmotsu, A class of almost contact Riemannian manifolds, TohokuMath. J. II Ser., Vol.24, pp.93-103 (1972).
  • M. A. Khan, K. Singh, V. A. Khan, Slant submanifolds of almost LP-contact manifold, Differential Geometry - Dynamical Systems, Vol.12, pp.102-108 (2010).
  • R. Rosca, On Lorentzian Kenmotsu manifolds, Atti Accad. Peloritana Pericolanti Cl. Aci. Fis. Mat. Natur, Vol.69, pp.15-30 (1991).
  • R. Sari, A. Vanli, Slant submanifolds of a Lorentz Kenmotsu manifold. Mediterr. J. Math.,16:129,(2019).
  • R. Sari, I. Unal, Semi-invariant submanifolds a Lorentzian Kenmotsu manifold with semi- symmetric metric connection, Bingol University Journal of Technical Science, Vol.2, No.1, pp.36-42 (2021).
  • R. Sari, S. Dirik, Generic Submanifolds of Para beta Kenmotsu Manifold, Journal of Engineering Research and Applied Science,Vol.12, No.1, pp.2291-2294 (2023).
  • T. Takahashi, Sasakian manifold with pseudo-Riemannian metric,Tohoku Math. J., Vol.21, No.2, pp.271-290 (1969).
  • I. Unal, Generic submanifolds of Lorentzian Para Kenmotsu Manifold, KMU Journal of Engineering and Natural Sciences, Vol.3, No.2, pp.79-85 (2021).
  • I. Unal, A classification of para-Kenmotsu space forms, Palestine Journal of Mathematics, 10(S.I,II), pp.197-203 (2021).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Ramazan Sarı 0000-0002-4618-8243

Yayımlanma Tarihi 29 Aralık 2024
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 1 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"

Kaynak Göster

APA Sarı, R. (2024). HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS. Journal of Universal Mathematics, 7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"), 102-108. https://doi.org/10.33773/jum.1564979
AMA Sarı R. HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS. JUM. Aralık 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):102-108. doi:10.33773/jum.1564979
Chicago Sarı, Ramazan. “HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS”. Journal of Universal Mathematics 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024): 102-8. https://doi.org/10.33773/jum.1564979.
EndNote Sarı R (01 Aralık 2024) HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS. Journal of Universal Mathematics 7 To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" 102–108.
IEEE R. Sarı, “HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS”, JUM, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", ss. 102–108, 2024, doi: 10.33773/jum.1564979.
ISNAD Sarı, Ramazan. “HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS”. Journal of Universal Mathematics 7/To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI" (Aralık 2024), 102-108. https://doi.org/10.33773/jum.1564979.
JAMA Sarı R. HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS. JUM. 2024;7:102–108.
MLA Sarı, Ramazan. “HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS”. Journal of Universal Mathematics, c. 7, sy. To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI", 2024, ss. 102-8, doi:10.33773/jum.1564979.
Vancouver Sarı R. HEMI-SLANT SUBMANIFOLDS OF LORENTZIAN KENMOTSU SPACE FORMS. JUM. 2024;7(To memory "Assoc. Prof. Dr. Zeynep AKDEMİRCİ ŞANLI"):102-8.