Araştırma Makalesi
BibTex RIS Kaynak Göster

FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION

Yıl 2025, Cilt: 8 Sayı: 1, 40 - 51, 31.01.2025

Öz

The most complex steady-state behaviour known in dynamical systems is that which is characterised as "chaos". The three-dimensional Lorenz system, which is linear and nonperiodic, is a chaotic system that is used to study the properties of a two-dimensional liquid layer that is homogeneously heated from below and cooled from above. In this study, the fractional order Lorenz Chaos model is considered and mathematically analysed. This model consists of three compartments: x orbit, y orbit and z orbit. The fractional derivative is used in the sense of Caputo. The numerical results for the fractional Lorenz Chaos model are obtained with the help of the Euler method, and graphs are drawn.

Kaynakça

  • A. Atangana A., S. Igret Araz, New numerical scheme with Newton polynomial: Theory, methods and applications, Academic Press. London, UK, (2021).
  • A. Akgul, H. Calgan, I. Koyuncu, I. Pehlivan, A. Istanbullu, Chaos-based engineering applications with a 3D chaotic system without equilibrium points, Nonlinear dynamics, Vol.84, No.2, pp.481-495, (2016).
  • B.S.T. Alkahtani, A new numerical scheme based on Newton polynomial with application to fractional nonlinear differential equations, Alexandria Engineering Journal, (2019).
  • I. Podlubny, Fractional Differential Equations, Academy Press, San Diego CA, (1999).
  • A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractalfractional operators, Chaos Solitons and Fractals, Vol.123, pp.320-337, (2019).
  • J.S.A Linda, An Introduction to Mathematical Biology. Pearson Education Ltd., USA, pp.123-127, (2007).
  • M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, Vol.2, pp.1-11, (2016).
  • A. Atangana, D. Baleanu, Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative, Filomat, Vol.31, No.8, pp.2243-2248, (2016).
  • Z. Hammouch, T. Mekkaoui, Circuit design and simulation for the fractional order chaotic behavior in a new dynamical system, Complex & Intelligent Systems, Vol.4, No.4, (2018).
  • K.M. Owolabi, A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos, Solitons & Fractals, Vol.115, pp.362-370 (2018).
  • L.J.S. Allen, An Introduction to Mathematical Biology, Department of Mathematics and Statistics, Texas Tech University, Pearson Education., 348, (2007).
  • K. Rajagopal, A. Akgül, S. Jafari, A. Karthikeyan, I. Koyuncu, Chatic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses, Chaos Solitons Fractals, Vol.103, pp.476- 487, (2017).
  • Z. Öztürk, H. Bilgil, S. Sorgun, Application of Fractional SIQRV Model for SARS-CoV-2 and Stability Analysis. Symmetry, Vol.15, No.5, pp.1048 (2023).
  • W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, in: Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, Vol.115, No.772, pp.700-721, (1927).
  • D. Yaro, S.K. Omari-Sasu, P. Harvim, A.W. Saviour, B.A. Obeng, Generalized Euler method for modeling measles with fractional differential equations. Int. J. Innovative Research and Development, Vol.4, (2015).
  • H.T. Alemneh, N.Y. Alemu, Mathematical modeling with optimal control analysis of social media addiction. Infectious Disease Modelling, Vol.6, pp.405-419 (2021).
  • H. Bilgil, A. Yousef, A. Erciyes, Ü. Erdinç, Z. Öztürk, A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. Journal of computational and applied mathematics, Vol.425, 115015 (2023).
  • Z. Öztürk, A. Yousef, H. Bilgil, S. Sorgun, A Fractional-order mathematical model to analyze the stability and develop a sterilization strategy for the habitat of stray dogs. An International Journal of Optimization and Control: Theories Applications (IJOCTA), Vol.14, No.2, pp.134- 146 (2024).
  • Z. Öztürk, H. Bilgil, S. Sorgun, A new application of fractional glucose-insulin model and numerical solutions. Sigma Journal of Engineering and Natural Sciences, Vol.42, No.2, pp.407- 413 (2024).
  • C. Liping, M.A. Khan, A. Atangana, S. Kumar, A new financial chaotic model in Atangana-Baleanu stochastic fractional differential equations. Alexandria Engineering Journal, Vol.60, No.6, pp.5193-5204 (2021).
  • J. Mishra, A. Atangana, Numerical analysis of a chaotic model with fractional differential operators: from Caputo to Atangana-Baleanu. In Methods of Mathematical Modelling, CRC Press, pp.167-188 (2019).
  • D. Baleanu, S. Zibaei, M. Namjoo, A. Jajarmi, A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system. Advances in Difference Equations, Vol.1, No.308, (2021)
  • D. Baleanu, Y. Karaca, L. Vazquez, J.E. Macias-Diaz, Advanced fractional calculus, differential equations and neural networks: Analysis, modeling and numerical computations. Physica Scripta, Vol.98, No.11, pp.110201, (2023).
Yıl 2025, Cilt: 8 Sayı: 1, 40 - 51, 31.01.2025

Öz

Kaynakça

  • A. Atangana A., S. Igret Araz, New numerical scheme with Newton polynomial: Theory, methods and applications, Academic Press. London, UK, (2021).
  • A. Akgul, H. Calgan, I. Koyuncu, I. Pehlivan, A. Istanbullu, Chaos-based engineering applications with a 3D chaotic system without equilibrium points, Nonlinear dynamics, Vol.84, No.2, pp.481-495, (2016).
  • B.S.T. Alkahtani, A new numerical scheme based on Newton polynomial with application to fractional nonlinear differential equations, Alexandria Engineering Journal, (2019).
  • I. Podlubny, Fractional Differential Equations, Academy Press, San Diego CA, (1999).
  • A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractalfractional operators, Chaos Solitons and Fractals, Vol.123, pp.320-337, (2019).
  • J.S.A Linda, An Introduction to Mathematical Biology. Pearson Education Ltd., USA, pp.123-127, (2007).
  • M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, Vol.2, pp.1-11, (2016).
  • A. Atangana, D. Baleanu, Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative, Filomat, Vol.31, No.8, pp.2243-2248, (2016).
  • Z. Hammouch, T. Mekkaoui, Circuit design and simulation for the fractional order chaotic behavior in a new dynamical system, Complex & Intelligent Systems, Vol.4, No.4, (2018).
  • K.M. Owolabi, A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos, Solitons & Fractals, Vol.115, pp.362-370 (2018).
  • L.J.S. Allen, An Introduction to Mathematical Biology, Department of Mathematics and Statistics, Texas Tech University, Pearson Education., 348, (2007).
  • K. Rajagopal, A. Akgül, S. Jafari, A. Karthikeyan, I. Koyuncu, Chatic chameleon: dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses, Chaos Solitons Fractals, Vol.103, pp.476- 487, (2017).
  • Z. Öztürk, H. Bilgil, S. Sorgun, Application of Fractional SIQRV Model for SARS-CoV-2 and Stability Analysis. Symmetry, Vol.15, No.5, pp.1048 (2023).
  • W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, in: Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, Vol.115, No.772, pp.700-721, (1927).
  • D. Yaro, S.K. Omari-Sasu, P. Harvim, A.W. Saviour, B.A. Obeng, Generalized Euler method for modeling measles with fractional differential equations. Int. J. Innovative Research and Development, Vol.4, (2015).
  • H.T. Alemneh, N.Y. Alemu, Mathematical modeling with optimal control analysis of social media addiction. Infectious Disease Modelling, Vol.6, pp.405-419 (2021).
  • H. Bilgil, A. Yousef, A. Erciyes, Ü. Erdinç, Z. Öztürk, A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. Journal of computational and applied mathematics, Vol.425, 115015 (2023).
  • Z. Öztürk, A. Yousef, H. Bilgil, S. Sorgun, A Fractional-order mathematical model to analyze the stability and develop a sterilization strategy for the habitat of stray dogs. An International Journal of Optimization and Control: Theories Applications (IJOCTA), Vol.14, No.2, pp.134- 146 (2024).
  • Z. Öztürk, H. Bilgil, S. Sorgun, A new application of fractional glucose-insulin model and numerical solutions. Sigma Journal of Engineering and Natural Sciences, Vol.42, No.2, pp.407- 413 (2024).
  • C. Liping, M.A. Khan, A. Atangana, S. Kumar, A new financial chaotic model in Atangana-Baleanu stochastic fractional differential equations. Alexandria Engineering Journal, Vol.60, No.6, pp.5193-5204 (2021).
  • J. Mishra, A. Atangana, Numerical analysis of a chaotic model with fractional differential operators: from Caputo to Atangana-Baleanu. In Methods of Mathematical Modelling, CRC Press, pp.167-188 (2019).
  • D. Baleanu, S. Zibaei, M. Namjoo, A. Jajarmi, A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system. Advances in Difference Equations, Vol.1, No.308, (2021)
  • D. Baleanu, Y. Karaca, L. Vazquez, J.E. Macias-Diaz, Advanced fractional calculus, differential equations and neural networks: Analysis, modeling and numerical computations. Physica Scripta, Vol.98, No.11, pp.110201, (2023).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kısmi Diferansiyel Denklemler
Bölüm Araştırma Makalesi
Yazarlar

Zafer Öztürk 0000-0001-5662-4670

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 17 Eylül 2024
Kabul Tarihi 31 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Öztürk, Z. (2025). FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION. Journal of Universal Mathematics, 8(1), 40-51.
AMA Öztürk Z. FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION. JUM. Ocak 2025;8(1):40-51.
Chicago Öztürk, Zafer. “FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION”. Journal of Universal Mathematics 8, sy. 1 (Ocak 2025): 40-51.
EndNote Öztürk Z (01 Ocak 2025) FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION. Journal of Universal Mathematics 8 1 40–51.
IEEE Z. Öztürk, “FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION”, JUM, c. 8, sy. 1, ss. 40–51, 2025.
ISNAD Öztürk, Zafer. “FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION”. Journal of Universal Mathematics 8/1 (Ocak 2025), 40-51.
JAMA Öztürk Z. FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION. JUM. 2025;8:40–51.
MLA Öztürk, Zafer. “FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION”. Journal of Universal Mathematics, c. 8, sy. 1, 2025, ss. 40-51.
Vancouver Öztürk Z. FRACTIONAL ORDER LORENZ CHAOS MODEL AND NUMERICAL APPLICATION. JUM. 2025;8(1):40-51.