Teorik Makale
BibTex RIS Kaynak Göster

RE-VISIT I*-SEQUENTIAL TOPOLOGY

Yıl 2025, Cilt: 8 Sayı: 1, 20 - 32, 31.01.2025
https://doi.org/10.33773/jum.1555200

Öz

In this paper, I*-sequential topology is defined on a topological
space (X, τ) by considering any ideal I which is a family of subset of natural
numbers N. It has been proven that I∗-sequential topology is finer than
I-sequential topology. In connection with this fact, the notions I*-continuity
and I∗-sequential continuity are shown to be coincided in this topology. Additionally,
I*-sequential compactness and related notions are defined and investigated.

Kaynakça

  • A. Blali, A.El Amrani, R.A.Hasani, A.Razouki, On the uniqueness of I-limits of sequences, Siberian Electronic Mathematical reports, Vol.18, No.2, pp.744-757 (2021).
  • A.K. Banerjee, A. Banerjee, I-convergence classes of sequences and nets in topological spaces, Jordan Journal of Mathematics and Statistics (JJMS), Vol.11, No.1, pp.13-31 (2018).
  • P. Das, Some further results on ideal convergence in topological spaces, Topology Appl., Vol.159, Vol.10-11, pp.2621-2626 (2012).
  • P. Das, P. Kostyrko, W. Wilczynski, P. Malik, I and I∗-convergence of double sequences, Math. Slovaca, Vol.58, No.5 pp.605-620 (2008).
  • P. Erdos, G. Tenenbaum, Sur les densities de certaines suites d´entiers, Proc. London Math. Soc., Vol.59, pp.417-438 (1989).
  • H. Fast, Sur la convergence statistique, Colloq. Math., Vol.2, pp.241-244 (1951).
  • R. Filipow, N. Mrozek, I. Rec Law, P. Szuca, Ideal convergence of bounded sequences, J. Symb. Log., Vol.72, No.2, pp.501-512 (2007).
  • A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., Vol.32, pp.129-138 (2002).
  • D. Georgiou, S. Iliadis, A. Megaritis, G. Prinos, Ideal-convergence classes, Topology Appl., Vol.222, pp.217-226 (2017).
  • B. Hazarika, A. Esi, Some ideal-convergent generalized difference sequences in a locally convex space defined by a Musielak-Orlicz function, Mat. Stud., Vol.42, No.2 pp.195-208 (2014).
  • P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, Vol.55, No.4, pp.443-464 (2005).
  • P. Kostyrko, T.Salat, W. Wilczynki, I-convergence, Real Anal. Exch., Vol.26, No.2, pp.669-685 (2000).
  • B.K. Lahiri, P. Das, I and I∗-convergence in topological spaces, Math. Bohem., Vol.130,No.2, pp.153-160 (2005).
  • A. Nabiev, S. Pehlivan, M.G¨urdal, On I-Cauchy sequences, Taiwanese J. Math., Vol.11, No.2, pp.569-576 (2007).
  • R.L. Newcomb, Topologies which are compact modulo an ideal, Ph.D.Thesis, Uni. Of Cal. At Santa Barbara, (1967).
  • S.K. Pal, I-sequential topological spaces, Appl. Math. E-Notes, Vol.14, pp.236-241 (2014).
  • D.V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., Vol.13, pp.193-197 (1972).
  • V. Renukadevi, B. Prakash, I-Freched-Urysohn spaces, Math. Morav., Vol.20, No.2, pp.87-97 (2016).
  • T. Salat, B.C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ, Vol.28, No.2, pp.279-286 (2004).
  • T. Salat, B.C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math, Vol.17, pp.45-54 (2005).
  • I. Schoenberg, The integrability of certain functions and related summability methods. I,II, Am. Math. Mon., Vol.66, pp.361-775 (1959).
  • M. Singha, S. Roy, Compactness with ideals, Math. Slovaca, Vol.73, No.1, pp.195-204 (2023).
  • H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., Vol.2, pp.73-74 (1951).
  • B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., Vol.16, No.6, pp.1021-1027 (2012).
  • X. Zhou, L. Liu, S. Lin, On topological spaces defined by I-convergence, Bull. Iran. Math.Soc., Vol.46, No.3, pp.675-692 (2020).
  • A. Zygmund, Trigonometric Series, Second ed., Cambridge Univ. Press, Cambridge, (1979).
Yıl 2025, Cilt: 8 Sayı: 1, 20 - 32, 31.01.2025
https://doi.org/10.33773/jum.1555200

Öz

Kaynakça

  • A. Blali, A.El Amrani, R.A.Hasani, A.Razouki, On the uniqueness of I-limits of sequences, Siberian Electronic Mathematical reports, Vol.18, No.2, pp.744-757 (2021).
  • A.K. Banerjee, A. Banerjee, I-convergence classes of sequences and nets in topological spaces, Jordan Journal of Mathematics and Statistics (JJMS), Vol.11, No.1, pp.13-31 (2018).
  • P. Das, Some further results on ideal convergence in topological spaces, Topology Appl., Vol.159, Vol.10-11, pp.2621-2626 (2012).
  • P. Das, P. Kostyrko, W. Wilczynski, P. Malik, I and I∗-convergence of double sequences, Math. Slovaca, Vol.58, No.5 pp.605-620 (2008).
  • P. Erdos, G. Tenenbaum, Sur les densities de certaines suites d´entiers, Proc. London Math. Soc., Vol.59, pp.417-438 (1989).
  • H. Fast, Sur la convergence statistique, Colloq. Math., Vol.2, pp.241-244 (1951).
  • R. Filipow, N. Mrozek, I. Rec Law, P. Szuca, Ideal convergence of bounded sequences, J. Symb. Log., Vol.72, No.2, pp.501-512 (2007).
  • A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., Vol.32, pp.129-138 (2002).
  • D. Georgiou, S. Iliadis, A. Megaritis, G. Prinos, Ideal-convergence classes, Topology Appl., Vol.222, pp.217-226 (2017).
  • B. Hazarika, A. Esi, Some ideal-convergent generalized difference sequences in a locally convex space defined by a Musielak-Orlicz function, Mat. Stud., Vol.42, No.2 pp.195-208 (2014).
  • P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, Vol.55, No.4, pp.443-464 (2005).
  • P. Kostyrko, T.Salat, W. Wilczynki, I-convergence, Real Anal. Exch., Vol.26, No.2, pp.669-685 (2000).
  • B.K. Lahiri, P. Das, I and I∗-convergence in topological spaces, Math. Bohem., Vol.130,No.2, pp.153-160 (2005).
  • A. Nabiev, S. Pehlivan, M.G¨urdal, On I-Cauchy sequences, Taiwanese J. Math., Vol.11, No.2, pp.569-576 (2007).
  • R.L. Newcomb, Topologies which are compact modulo an ideal, Ph.D.Thesis, Uni. Of Cal. At Santa Barbara, (1967).
  • S.K. Pal, I-sequential topological spaces, Appl. Math. E-Notes, Vol.14, pp.236-241 (2014).
  • D.V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., Vol.13, pp.193-197 (1972).
  • V. Renukadevi, B. Prakash, I-Freched-Urysohn spaces, Math. Morav., Vol.20, No.2, pp.87-97 (2016).
  • T. Salat, B.C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ, Vol.28, No.2, pp.279-286 (2004).
  • T. Salat, B.C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math, Vol.17, pp.45-54 (2005).
  • I. Schoenberg, The integrability of certain functions and related summability methods. I,II, Am. Math. Mon., Vol.66, pp.361-775 (1959).
  • M. Singha, S. Roy, Compactness with ideals, Math. Slovaca, Vol.73, No.1, pp.195-204 (2023).
  • H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., Vol.2, pp.73-74 (1951).
  • B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput., Vol.16, No.6, pp.1021-1027 (2012).
  • X. Zhou, L. Liu, S. Lin, On topological spaces defined by I-convergence, Bull. Iran. Math.Soc., Vol.46, No.3, pp.675-692 (2020).
  • A. Zygmund, Trigonometric Series, Second ed., Cambridge Univ. Press, Cambridge, (1979).
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Topoloji
Bölüm Araştırma Makalesi
Yazarlar

Hassina Sabor Behmanush 0009-0004-3433-4209

Mehmet Küçükaslan 0000-0002-3183-3123

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 24 Eylül 2024
Kabul Tarihi 5 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Sabor Behmanush, H., & Küçükaslan, M. (2025). RE-VISIT I*-SEQUENTIAL TOPOLOGY. Journal of Universal Mathematics, 8(1), 20-32. https://doi.org/10.33773/jum.1555200
AMA Sabor Behmanush H, Küçükaslan M. RE-VISIT I*-SEQUENTIAL TOPOLOGY. JUM. Ocak 2025;8(1):20-32. doi:10.33773/jum.1555200
Chicago Sabor Behmanush, Hassina, ve Mehmet Küçükaslan. “RE-VISIT I*-SEQUENTIAL TOPOLOGY”. Journal of Universal Mathematics 8, sy. 1 (Ocak 2025): 20-32. https://doi.org/10.33773/jum.1555200.
EndNote Sabor Behmanush H, Küçükaslan M (01 Ocak 2025) RE-VISIT I*-SEQUENTIAL TOPOLOGY. Journal of Universal Mathematics 8 1 20–32.
IEEE H. Sabor Behmanush ve M. Küçükaslan, “RE-VISIT I*-SEQUENTIAL TOPOLOGY”, JUM, c. 8, sy. 1, ss. 20–32, 2025, doi: 10.33773/jum.1555200.
ISNAD Sabor Behmanush, Hassina - Küçükaslan, Mehmet. “RE-VISIT I*-SEQUENTIAL TOPOLOGY”. Journal of Universal Mathematics 8/1 (Ocak 2025), 20-32. https://doi.org/10.33773/jum.1555200.
JAMA Sabor Behmanush H, Küçükaslan M. RE-VISIT I*-SEQUENTIAL TOPOLOGY. JUM. 2025;8:20–32.
MLA Sabor Behmanush, Hassina ve Mehmet Küçükaslan. “RE-VISIT I*-SEQUENTIAL TOPOLOGY”. Journal of Universal Mathematics, c. 8, sy. 1, 2025, ss. 20-32, doi:10.33773/jum.1555200.
Vancouver Sabor Behmanush H, Küçükaslan M. RE-VISIT I*-SEQUENTIAL TOPOLOGY. JUM. 2025;8(1):20-32.