Araştırma Makalesi
BibTex RIS Kaynak Göster

Scilla autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri

Yıl 2021, Cilt: 11 Sayı: 2, 299 - 306, 01.08.2021

Öz

Amaç: Bu çalışmada U87 glioblastoma hücre hattı üzerinde bitkisel temelli kemoterapötik olarak davranma potansiyeli taşıyan Scilla autumnalis özütünün etkisinin ölçülmesi amaçlanmıştır.
Materyal ve Metot: Sitotoksisite deneyleri örneklerin canlılığının MTT (3 - (4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) yöntemiyle belirlenmesiyle saptanmıştır. Glioblastoma hücreelerindeki Glukoz transporter 1 (GLUT1), Glukoz transporter 3 (GLUT3), Glukoz transporter 4 (GLUT4), Heksokinaz 1 (HK1) and Heksokinaz 2 (HK2), Multidrug resistance1 (MDR1), Cytochrome P450 Family 2 Subfamily E Member 1 (CYP2E1) ve Pregnane X receptor (PXR) gen anlatım düzeyleri kantitatif RT-PCR kullanılarak analiz edilmiştir.
Bulgular: Elde edilen sonuçlara gore GLUT1 anlatımı %10 düzeyinde artarken GLUT3 anlatımında bir değişiklik saptanmamıştır. Kök etanol özütü GLUT4 anlatımını %13 kadar azaltırken gövde özütü %5-6 civarında artırmıştır. Glioblastomadaki HF1 ve HK2 anlatım düzeyleri control grubuna gore önemli ölçüde düşük olarak bulunmmuştur. S. autumnaliskök özütü MDR1 anlatımında küçükbir miktar artışa yol açmıştır. CYP2E1’nin anlatım düzeyinin S. autumnalis’in kök ve gövde özütü uygulanmış glioblastoma hücrelerinde kontrol grubuna göre %20 oranında düştüğü saptanmışken PXR anlatımının da azaldığı gözlemlenmiştir.
Sonuç: Bu çalışma S. autumnalis’in sitotoksik etkisinin anlaşılmasına önemli bir katkı sunabilir. Bu yaklaşım S. autumnalis bitki özütünün glioblastoma tedavisinde aday ilaç olarak kullanılabileceğine işaret etmektedir.

Kaynakça

  • 1. Karcher S, Steiner HH, Ahmadi R, Zoubaa S, Vasvari G, Bauer H et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 2006;18:2182-2189.
  • 2. Moore MP, Bagley RS, Harrington ML and Gavin PR. Intracranial tumours. Clin North Am Small Anim Pract Vet 1996;26:759-777.
  • 3. Kabat GC, Etgen AM and Rohan TE. Do steroid hormones play a role in the etiology of glioma? Cancer Epidemiol Biomarkers Prev 2010; 19:2421-27.
  • 4. Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 2006;66:159-167.
  • 5. Zhen L, Yufeng C, Zhenyu S and Lei X. Multiple extracranial metastases from secondary glioblastoma multiforme: a case report and review of the literature. J Neurooncol 2010;99:165-176.
  • 6. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain 2007;130:2596-2606.
  • 7. Lakhan SE and Harle L. Difficult diagnosis of brainstem glioblastoma multiforme in a woman: a case report and review of the literature. J Med Case Rep 2009;3:87.
  • 8. Hur H, Jung S, Jung TY and Kim IY. Cerebellar glioblastoma multiforme in an adult. J Korean Neurosurg Soc 2008;43(4):194-197.
  • 9. De Castro-Costa CM, de Araújo RW, de Arruda MA, de Araújo PM and de Figueiredo EG. Increased intracranial pressure in a case of spinal cervical glioblastoma multiforme. Analysis of these two rare conditions. Arq Neuropsiquiatr 1994;52:64-8.
  • 10. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87-108.
  • 11. Millimouno FM, Dong J, Yang L, Li J, and Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014;7(11):1081-1107.
  • 12. Mulholland DA, Schwikkard SL and Crouch NR. The chemistry and biological activity of the Hyacinthaceae. Nat Prod Rep 2013;30(9):1165-1210.
  • 13. Ghoran SF, Pouneh Ebrahimi P, Hossein Mighani H and Soudabeh Saeidnia S. Isolation and characterization of homoisoflavonoids from Scilla persica Hausskn. Brazilian Journal of Pharmaceutical Sciences 2015;51(4):949-955.
  • 14. Ghoran SF, Saeidnia S, Babaei E, Kiuchi F and Hussain H Scilla persicene:a new homoisoflavonoid with cytotoxic activity from the bulbs of Scilla persica Hausskn. Natural Product Research 2016;30(11):1309–1314.
  • 15. Kalaiselvan M and Gopalan R. Ethnobotanical studies on selected wild medicinal plants used by Irula tribes of bolampatty valley, nilgiri biosphere reserve (NBR), southern Western Ghats, India. Asian Journal of Pharmaceutical and Clinical Research 2014;7(1):22-26.
  • 16. Du Toit K, Kweyama A and Bodenstein J. Anti-inflammatory and antimicrobial profiles of Scilla nervosa (Burch.) Jessop (Hyacinthaceae). South Afr J Sci 2011;107(5-6):96-100.
  • 17. Clark AM. Natural Products as a Resource for New Drugs. Pharmaceutical Research 1996;13(8):1133-1141.
  • 18. Mimaki Y, Nishino H, Kuroda M, Matsui T and Sashida Y. Lanosterol Oligosaccharides from the Plants of the Subfamily Scilloideae and Their Antitumor Promoter Activity. Chemical and Pharmaceutical Bulletin 1994;42(2):327-332.
  • 19. Lee HB and Lee SM. Antimicrobial Activity of Eucosterol Oligosaccharides Isolated from Bulb of Squill (Scilla scilloides). Pharmacology & Pharmacy 2013;4:110-114.
  • 20. Abegaz BM. Novel phenylanthraquinones, isofuranonaphthoquinones, homoisoflavonoids, and biflavonoids from African plants in the genera Bulbine, Scilla, Ledebouria, and Rhus. Phytochem Rev 2002;1:299- 310.
  • 21. Sakthivel K, Palani S, Selvaraj R, Venkadesan D, Sivasankari H and Senthil Kumar B. Cardioprotective and Antioxidant Potential of Scilla hyacinthina. Journal of Biological Sciences 2013;13(5):313-322.
  • 22. Yeo EJ, Kim KT, Han YS, Nah YS and Paik HD. Antimicrobial, anti-inflammatory and anti-oxidative activities of Scilla scilloides (Lindl.) Druce root extract. Food Sci Biotechnol, 2006;15:639-642.
  • 23. Nishida Y, Sugahar S, Kensuke Wada K, Toyohisa D, Tanaka T, Ono M et al. Inhibitory effects of the ethyl acetate extract from bulbs of Scilla scilloides on lipoxygenase and hyaluronidase activities. Pharmaceutic al Biology 2014;52(10):1351–1357.
  • 24. Alluri N, Ravi BV, Kumari H, Latha P, MAjumdar M. Evaluation of in vitro antioxidant, anti-inflammatory and thrombolytic activities of Scilla hyacinthina, an endangered medicinal plant. International Journal of Pharmacy and Pharmaceutical Sciences 2015;7(4):84-88.
  • 25. Gupta LM and Raina R. Antioxidant property of the bulb of Scilla indica. Current Science 2001;80(10):1267-1269.
  • 26. Mammadov R, Kaska A, Ozay C. Phenolic Composition, Antioxidant and Cytotoxic Activities of Prospero autumnale. Indian Journal of Pharmaceutical Sciences 2017;79(4):585-590.
  • 27. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol 2015;17:iv1–iv62
  • 28. Schacter L. Etoposide phosphate:what, why, where, and how? Semin Oncol 1996;23:1–7.
  • 29. Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2002;2:143–148.
  • 30. Altmann KH and Gertsch J. Anticancer drugs from nature-natural products as a unique source of new microtubulestabilizing agents. Nat Prod Rep 2007;24:327–357.
  • 31. Ori K, Kuroda M, Mimaki Y, Sakagami H and Sashida Y. Lanosterol and Tetranorlanosterolglycodised from the bulbs of Muscari paradoxum. Phytochemistry 2003;64(8):1351-1359.
  • 32. Wang YM, Fan MY, Li J, Wang ZM, Gao HM. Homoisoflavanones and stilbenes from fresh bulb of Scilla scilloides. Zhongguo Zhong Yao Za Zhi 2014; 39(19):3788-3793.
  • 33. Chinthala Y, Chinde S, Kumar AN, Srinivas KV, Kumar JK, Sastry KP, et al. Anticancer Active Homoisoflavone from the Underground Bulbs of Ledebouria hyderabadensis. Pharmacognosy Res 2014;6(4):303-5.
  • 34. Cantor JR and Sabatini DM. Cancer cell metabolism:one hallmark, many faces. Cancer Discov 2012;2(10):881-898.
  • 35. Hanahan D and Weinberg RA. Hallmarks of Cancer:The Next Generation. Cell 2011;144:646–674.
  • 36. Duelli R and Kuschinsky W. Brain glucose transporters:relationship to local energy demand. News Physiol Sci 2001;16:71–76.
  • 37. Nishioka T, Oda Y, Seino Y, Yamamoto T, Inagaki N, Yano H et al. Distribution of the glucose transporters in human brain tumors. Cancer Res 1992;52:3972-3979.
  • 38. Tsukamoto H, Boado RJ and Pardridge WM. Differential expression in glioblastoma multiforme and cerebral hemangioblastoma of cytoplasmic proteins that bind two different domains within the 3'-untranslated region of the human glucose transporter 1 (GLUT1) messenger RNA. J Clin Invest 1996;97:2823-2832.
  • 39. Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 2010;28:851-862.
  • 40. Pistollato F, Rampazzo E, Persano L, Abbadi S, Frasson C, Denaro L et al. Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 2010;28:1918-1929.
  • 41. Nagamatsu S, Sawa H, Wakizaka A and Hoshino T. Expression of facilitative glucose transporter isoforms in human brain tumors. J Neurochem 1993;61(6):2048-2053.
  • 42. Zambrano A, Molt M, Uribe Eand Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci 2019;20(13): 3374.
  • 43. George Thompson AM, Iancu CV, Nguyen TT, Kim D and Choe JY. Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity. Sci Rep 2015:26(5):12804.
  • 44. Liao H, Wang Z, Deng Z, Ren H and Li X. Curcumin inhibits lung cancer invasion and metastasis by attenuating glut1/mt1-mmp/mmp2 pathway. Int J Clin Ex. Med 2015;8:8948–8957.
  • 45. García-Suástegui WA, Ramos-Chávez LA, Rubio-Osornio M, Calvillo-Velasco M, Atzin-Méndez JA, Guevara J et al. The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain. Oxid Med Cell Longev 2017;4680732.
  • 46. Pillay P, Phulukdaree A, Chuturgoon AA, Du Toit K and Bodenstein J The cytotoxic effects of Scilla nervosa (Burch.) Jessop (Hyacinthaceae) aqueous extract on cultured HepG2 cells. J Ethnopharmacol 145(1) 2013;(1):200-204.
  • 47. Gonzalez FJ. Mutant Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Res 2005;569(1-2):101-110.
  • 48. Knockaert L, Fromenty Band Robin MA. Mechanisms of mitochondrial targeting of cytochrome P450 2E1: physiopathological role in liver injury and obesity. FEBS J 2011;278(22):4252- 4260.
  • 49. Leung T, Rajendran R, Singh S, Garva R, Krstic-Demonacos M and Demonacos C. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res 2013;15(6): R107.
  • 50. Ho JC, Cheung ST, Leung KL, Ng IO and Fan ST. Decreased expression of cytochrome P450 2E1 is associated with poor prognosis of hepatocellular carcinoma. Int J Cancer 2004;111(4):494-500.
  • 51. Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, et al. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. Int J Mol Sci 2018;19(10):pii:E2879.
  • 52. Zhuo W, Hu L, Lv J, Wang H, Zhou H and Fan L. Role of pregnane X receptor in chemotherapeutic treatment. Cancer Chemother Pharmacol 2014;74(2):217-227.
  • 53. Chen Y, Tang Y, Wang MT, Zeng S, Nie D. Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res 2007;67:10361–10367.
  • 54. Conde I, Lobo MV, Zamora J, Perez J, Gonzalez FJ, Alba E, et al. Human pregnane X receptor is expressed in breast carcinomas, potential heterodimers formation between hPXR and RXR-alpha. BMC Cancer 2008;8:174.
  • 55. Qiao EQ and Yang HJ. Effect of pregnane X receptor expression on drug resistance in breast cancer. Oncology letters 2014;7:1191–1196.
  • 56. Chen Y, Tang Y, Chen S and Nie D. Regulation of drug resistance by human pregnane X receptor in breast cancer. Cancer Biol Ther 2009;8:1265–1272.
  • 57. Liu H, Liu N, Cheng Y, Jin W, Zhang P, Wang X. Hexokinase 2 (HK2), the tumor promoter in glioma, is downregulated by miR-218/Bmi1 pathway. PLoS One 2017;12(12):e0189353
  • 58. Zhang D, Li J, Wang F, Hu J, Wang S and Sun Y. 2-Deoxy- D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 2014;355 (2):176−83.
  • 59. Azevedo-Silva J, Queiros O, Baltazar F, Ulaszewski S, Goffeau A, Ko YH et al. The anticancer agent 3-bromopyruvate:a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr 2016;48(4):349−362.
  • 60. Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A and Wnuk M. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis 2017;22(6):800−815.

Effects of Scilla autumnalis Extracts on U87-MG Human Glioblastoma Cells

Yıl 2021, Cilt: 11 Sayı: 2, 299 - 306, 01.08.2021

Öz

Aim: This study aimed to measure the effects of Scilla autumnalis extracts which might act as potential plant based chemotherapeutic, on U87 glioblastoma cell line.
Material and Method: Cytotoxicity assays were performed by determining the cell viability of the samples with MTT (3 - (4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide). Gene expression levels of glucose transporter 1 (GLUT1), Glucose transporter 3 (GLUT3), Glucose transporter 4 (GLUT4), Hexokinase 1 (HK1) and Hexokinase 2 (HK2), multidrug resistance1 (MDR1), Cytochrome P450 Family 2 Subfamily E Member 1 (CYP2E1) and Pregnane X receptor (PXR) was analyzed in glioblastoma cells using quantitative real-time RT-PCR.
Results: According to the analysis, we observed a 10% increase in the expression of Glut1, however, we did not observe a difference in Glut3 expression. For Glut4, root ethanol extract decreased its expression by 13% but shoot extracts elevated the expression levels by only 5-6%. We determined the low expression levels of HK1 and HK2 in glioblastoma compared to the control group. S. autumnalis root extract led to a slight increase in MDR1 expression. We found that the expression level of CYP2E1 was 20% lower in glioblastoma cells treated with Scilla autumnalis root and shoots extracts compared to the control group. We determined downregulation in PXR expression.
Conclusion: This study may contribute significantly to the understanding of the cytotoxic effect of Scilla autumnalis. This approach may allow the possibility of Scilla autumnalis plant extract as a candidate drug for the treatment of glioblastoma.

Kaynakça

  • 1. Karcher S, Steiner HH, Ahmadi R, Zoubaa S, Vasvari G, Bauer H et al. Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 2006;18:2182-2189.
  • 2. Moore MP, Bagley RS, Harrington ML and Gavin PR. Intracranial tumours. Clin North Am Small Anim Pract Vet 1996;26:759-777.
  • 3. Kabat GC, Etgen AM and Rohan TE. Do steroid hormones play a role in the etiology of glioma? Cancer Epidemiol Biomarkers Prev 2010; 19:2421-27.
  • 4. Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 2006;66:159-167.
  • 5. Zhen L, Yufeng C, Zhenyu S and Lei X. Multiple extracranial metastases from secondary glioblastoma multiforme: a case report and review of the literature. J Neurooncol 2010;99:165-176.
  • 6. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain 2007;130:2596-2606.
  • 7. Lakhan SE and Harle L. Difficult diagnosis of brainstem glioblastoma multiforme in a woman: a case report and review of the literature. J Med Case Rep 2009;3:87.
  • 8. Hur H, Jung S, Jung TY and Kim IY. Cerebellar glioblastoma multiforme in an adult. J Korean Neurosurg Soc 2008;43(4):194-197.
  • 9. De Castro-Costa CM, de Araújo RW, de Arruda MA, de Araújo PM and de Figueiredo EG. Increased intracranial pressure in a case of spinal cervical glioblastoma multiforme. Analysis of these two rare conditions. Arq Neuropsiquiatr 1994;52:64-8.
  • 10. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87-108.
  • 11. Millimouno FM, Dong J, Yang L, Li J, and Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014;7(11):1081-1107.
  • 12. Mulholland DA, Schwikkard SL and Crouch NR. The chemistry and biological activity of the Hyacinthaceae. Nat Prod Rep 2013;30(9):1165-1210.
  • 13. Ghoran SF, Pouneh Ebrahimi P, Hossein Mighani H and Soudabeh Saeidnia S. Isolation and characterization of homoisoflavonoids from Scilla persica Hausskn. Brazilian Journal of Pharmaceutical Sciences 2015;51(4):949-955.
  • 14. Ghoran SF, Saeidnia S, Babaei E, Kiuchi F and Hussain H Scilla persicene:a new homoisoflavonoid with cytotoxic activity from the bulbs of Scilla persica Hausskn. Natural Product Research 2016;30(11):1309–1314.
  • 15. Kalaiselvan M and Gopalan R. Ethnobotanical studies on selected wild medicinal plants used by Irula tribes of bolampatty valley, nilgiri biosphere reserve (NBR), southern Western Ghats, India. Asian Journal of Pharmaceutical and Clinical Research 2014;7(1):22-26.
  • 16. Du Toit K, Kweyama A and Bodenstein J. Anti-inflammatory and antimicrobial profiles of Scilla nervosa (Burch.) Jessop (Hyacinthaceae). South Afr J Sci 2011;107(5-6):96-100.
  • 17. Clark AM. Natural Products as a Resource for New Drugs. Pharmaceutical Research 1996;13(8):1133-1141.
  • 18. Mimaki Y, Nishino H, Kuroda M, Matsui T and Sashida Y. Lanosterol Oligosaccharides from the Plants of the Subfamily Scilloideae and Their Antitumor Promoter Activity. Chemical and Pharmaceutical Bulletin 1994;42(2):327-332.
  • 19. Lee HB and Lee SM. Antimicrobial Activity of Eucosterol Oligosaccharides Isolated from Bulb of Squill (Scilla scilloides). Pharmacology & Pharmacy 2013;4:110-114.
  • 20. Abegaz BM. Novel phenylanthraquinones, isofuranonaphthoquinones, homoisoflavonoids, and biflavonoids from African plants in the genera Bulbine, Scilla, Ledebouria, and Rhus. Phytochem Rev 2002;1:299- 310.
  • 21. Sakthivel K, Palani S, Selvaraj R, Venkadesan D, Sivasankari H and Senthil Kumar B. Cardioprotective and Antioxidant Potential of Scilla hyacinthina. Journal of Biological Sciences 2013;13(5):313-322.
  • 22. Yeo EJ, Kim KT, Han YS, Nah YS and Paik HD. Antimicrobial, anti-inflammatory and anti-oxidative activities of Scilla scilloides (Lindl.) Druce root extract. Food Sci Biotechnol, 2006;15:639-642.
  • 23. Nishida Y, Sugahar S, Kensuke Wada K, Toyohisa D, Tanaka T, Ono M et al. Inhibitory effects of the ethyl acetate extract from bulbs of Scilla scilloides on lipoxygenase and hyaluronidase activities. Pharmaceutic al Biology 2014;52(10):1351–1357.
  • 24. Alluri N, Ravi BV, Kumari H, Latha P, MAjumdar M. Evaluation of in vitro antioxidant, anti-inflammatory and thrombolytic activities of Scilla hyacinthina, an endangered medicinal plant. International Journal of Pharmacy and Pharmaceutical Sciences 2015;7(4):84-88.
  • 25. Gupta LM and Raina R. Antioxidant property of the bulb of Scilla indica. Current Science 2001;80(10):1267-1269.
  • 26. Mammadov R, Kaska A, Ozay C. Phenolic Composition, Antioxidant and Cytotoxic Activities of Prospero autumnale. Indian Journal of Pharmaceutical Sciences 2017;79(4):585-590.
  • 27. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol 2015;17:iv1–iv62
  • 28. Schacter L. Etoposide phosphate:what, why, where, and how? Semin Oncol 1996;23:1–7.
  • 29. Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2002;2:143–148.
  • 30. Altmann KH and Gertsch J. Anticancer drugs from nature-natural products as a unique source of new microtubulestabilizing agents. Nat Prod Rep 2007;24:327–357.
  • 31. Ori K, Kuroda M, Mimaki Y, Sakagami H and Sashida Y. Lanosterol and Tetranorlanosterolglycodised from the bulbs of Muscari paradoxum. Phytochemistry 2003;64(8):1351-1359.
  • 32. Wang YM, Fan MY, Li J, Wang ZM, Gao HM. Homoisoflavanones and stilbenes from fresh bulb of Scilla scilloides. Zhongguo Zhong Yao Za Zhi 2014; 39(19):3788-3793.
  • 33. Chinthala Y, Chinde S, Kumar AN, Srinivas KV, Kumar JK, Sastry KP, et al. Anticancer Active Homoisoflavone from the Underground Bulbs of Ledebouria hyderabadensis. Pharmacognosy Res 2014;6(4):303-5.
  • 34. Cantor JR and Sabatini DM. Cancer cell metabolism:one hallmark, many faces. Cancer Discov 2012;2(10):881-898.
  • 35. Hanahan D and Weinberg RA. Hallmarks of Cancer:The Next Generation. Cell 2011;144:646–674.
  • 36. Duelli R and Kuschinsky W. Brain glucose transporters:relationship to local energy demand. News Physiol Sci 2001;16:71–76.
  • 37. Nishioka T, Oda Y, Seino Y, Yamamoto T, Inagaki N, Yano H et al. Distribution of the glucose transporters in human brain tumors. Cancer Res 1992;52:3972-3979.
  • 38. Tsukamoto H, Boado RJ and Pardridge WM. Differential expression in glioblastoma multiforme and cerebral hemangioblastoma of cytoplasmic proteins that bind two different domains within the 3'-untranslated region of the human glucose transporter 1 (GLUT1) messenger RNA. J Clin Invest 1996;97:2823-2832.
  • 39. Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 2010;28:851-862.
  • 40. Pistollato F, Rampazzo E, Persano L, Abbadi S, Frasson C, Denaro L et al. Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 2010;28:1918-1929.
  • 41. Nagamatsu S, Sawa H, Wakizaka A and Hoshino T. Expression of facilitative glucose transporter isoforms in human brain tumors. J Neurochem 1993;61(6):2048-2053.
  • 42. Zambrano A, Molt M, Uribe Eand Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci 2019;20(13): 3374.
  • 43. George Thompson AM, Iancu CV, Nguyen TT, Kim D and Choe JY. Inhibition of human GLUT1 and GLUT5 by plant carbohydrate products; insights into transport specificity. Sci Rep 2015:26(5):12804.
  • 44. Liao H, Wang Z, Deng Z, Ren H and Li X. Curcumin inhibits lung cancer invasion and metastasis by attenuating glut1/mt1-mmp/mmp2 pathway. Int J Clin Ex. Med 2015;8:8948–8957.
  • 45. García-Suástegui WA, Ramos-Chávez LA, Rubio-Osornio M, Calvillo-Velasco M, Atzin-Méndez JA, Guevara J et al. The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain. Oxid Med Cell Longev 2017;4680732.
  • 46. Pillay P, Phulukdaree A, Chuturgoon AA, Du Toit K and Bodenstein J The cytotoxic effects of Scilla nervosa (Burch.) Jessop (Hyacinthaceae) aqueous extract on cultured HepG2 cells. J Ethnopharmacol 145(1) 2013;(1):200-204.
  • 47. Gonzalez FJ. Mutant Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Res 2005;569(1-2):101-110.
  • 48. Knockaert L, Fromenty Band Robin MA. Mechanisms of mitochondrial targeting of cytochrome P450 2E1: physiopathological role in liver injury and obesity. FEBS J 2011;278(22):4252- 4260.
  • 49. Leung T, Rajendran R, Singh S, Garva R, Krstic-Demonacos M and Demonacos C. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res 2013;15(6): R107.
  • 50. Ho JC, Cheung ST, Leung KL, Ng IO and Fan ST. Decreased expression of cytochrome P450 2E1 is associated with poor prognosis of hepatocellular carcinoma. Int J Cancer 2004;111(4):494-500.
  • 51. Da Ros M, De Gregorio V, Iorio AL, Giunti L, Guidi M, de Martino M, et al. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. Int J Mol Sci 2018;19(10):pii:E2879.
  • 52. Zhuo W, Hu L, Lv J, Wang H, Zhou H and Fan L. Role of pregnane X receptor in chemotherapeutic treatment. Cancer Chemother Pharmacol 2014;74(2):217-227.
  • 53. Chen Y, Tang Y, Wang MT, Zeng S, Nie D. Human pregnane X receptor and resistance to chemotherapy in prostate cancer. Cancer Res 2007;67:10361–10367.
  • 54. Conde I, Lobo MV, Zamora J, Perez J, Gonzalez FJ, Alba E, et al. Human pregnane X receptor is expressed in breast carcinomas, potential heterodimers formation between hPXR and RXR-alpha. BMC Cancer 2008;8:174.
  • 55. Qiao EQ and Yang HJ. Effect of pregnane X receptor expression on drug resistance in breast cancer. Oncology letters 2014;7:1191–1196.
  • 56. Chen Y, Tang Y, Chen S and Nie D. Regulation of drug resistance by human pregnane X receptor in breast cancer. Cancer Biol Ther 2009;8:1265–1272.
  • 57. Liu H, Liu N, Cheng Y, Jin W, Zhang P, Wang X. Hexokinase 2 (HK2), the tumor promoter in glioma, is downregulated by miR-218/Bmi1 pathway. PLoS One 2017;12(12):e0189353
  • 58. Zhang D, Li J, Wang F, Hu J, Wang S and Sun Y. 2-Deoxy- D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 2014;355 (2):176−83.
  • 59. Azevedo-Silva J, Queiros O, Baltazar F, Ulaszewski S, Goffeau A, Ko YH et al. The anticancer agent 3-bromopyruvate:a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr 2016;48(4):349−362.
  • 60. Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A and Wnuk M. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis 2017;22(6):800−815.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Murat Pekmez Bu kişi benim

Çağatay Tarhan Bu kişi benim

Ali Zeytünlüoğlu Bu kişi benim

Murat Turan Bu kişi benim

Şefika Beyza Mete Bu kişi benim

Aylin Köseler Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 2

Kaynak Göster

APA Pekmez, M., Tarhan, Ç., Zeytünlüoğlu, A., Turan, M., vd. (2021). Scilla autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri. Kafkas Journal of Medical Sciences, 11(2), 299-306.
AMA Pekmez M, Tarhan Ç, Zeytünlüoğlu A, Turan M, Mete ŞB, Köseler A. Scilla autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri. KAFKAS TIP BİL DERG. Ağustos 2021;11(2):299-306.
Chicago Pekmez, Murat, Çağatay Tarhan, Ali Zeytünlüoğlu, Murat Turan, Şefika Beyza Mete, ve Aylin Köseler. “Scilla Autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri”. Kafkas Journal of Medical Sciences 11, sy. 2 (Ağustos 2021): 299-306.
EndNote Pekmez M, Tarhan Ç, Zeytünlüoğlu A, Turan M, Mete ŞB, Köseler A (01 Ağustos 2021) Scilla autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri. Kafkas Journal of Medical Sciences 11 2 299–306.
IEEE M. Pekmez, Ç. Tarhan, A. Zeytünlüoğlu, M. Turan, Ş. B. Mete, ve A. Köseler, “Scilla autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri”, KAFKAS TIP BİL DERG, c. 11, sy. 2, ss. 299–306, 2021.
ISNAD Pekmez, Murat vd. “Scilla Autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri”. Kafkas Journal of Medical Sciences 11/2 (Ağustos 2021), 299-306.
JAMA Pekmez M, Tarhan Ç, Zeytünlüoğlu A, Turan M, Mete ŞB, Köseler A. Scilla autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri. KAFKAS TIP BİL DERG. 2021;11:299–306.
MLA Pekmez, Murat vd. “Scilla Autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri”. Kafkas Journal of Medical Sciences, c. 11, sy. 2, 2021, ss. 299-06.
Vancouver Pekmez M, Tarhan Ç, Zeytünlüoğlu A, Turan M, Mete ŞB, Köseler A. Scilla autumnalis Ekstrelerinin U-87 MG İnsan Glioblastoma Hücreleri Üzerinde Etkileri. KAFKAS TIP BİL DERG. 2021;11(2):299-306.