Araştırma Makalesi
BibTex RIS Kaynak Göster

Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function

Yıl 2025, Cilt: 15 Sayı: 2, 199 - 207, 31.08.2025

Öz

Aim: Currently, left ventricular diastolic dysfunction (LVDD) is evaluated using indirect parameters derived from trans-mitral valve inflow velocity (TMIV), pulmonary vein flow, and LV diastolic annular tissue velocity (DATV). None of these parameters is obtained directly from the LV global myocardium. This study aimed to examine the relationship between left ventricular (LV) global longitudinal diastolic strain curve angle (DSCA), which directly assesses myocardial function, and TMIV and DATV parameters, and to determine whether DSCA can serve as a new tool for detecting LVDD.
Material and Methods: 114 patients with sinus rhythm were included in the study. Conventional pulse wave Doppler parameters [TMIV E and A peak velocity, E/A ratio (E/AR), deceleration time (DT), deceleration slop (DS)], DATV parameters [Septal é (Sé), E/Septal é ratio (E/SéR)], and DSCA parameters, including early (EεA) and late (AεA) diastolic strain angles and their ratio (Eε/AεAR) obtained from apical 2, 4 and 5 apical chamber views (ACV) were compared.
Results: A significantly positive strong correlation was found between Eε/AεAR and E/AR, E/SéR on all views (r=0.620, r=0.548, r=0.570, and r=-0.431, r=-0.279, r=-0.255, respectively). Also, a significantly positive correlation was found between the EεA and E velocity, Eε/AεAR, DS on all views, and, except for A4CV, a significantly negative correlation was found between AεA and E velocity, DS on A2CV and A5CV.
Conclusion: The EεA, AεA, and Eε/AεAR are a simple, repeatable, useful and new tool for the evaluation of LVDD, and they can be used alone or together with conventional diastolic parameters for the assessment of LVDD.

Kaynakça

  • 1. Obokata M, Reddy YNV, Borlaug BA. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC. Cardiovascular Imaging. 2020;13(1 Pt 2):245–57.
  • 2. Lalande S, Johnson BD. Diastolic Dysfunction as a Link Between Hypertension and Heart Failure. Natl Libr Med. 2008;44(7):503–13.
  • 3. Zhu J, Shi F, You T, Tang C, Chen J. Global diastolic strain rate for the assessment of left ventricular diastolic dysfunction in young peritoneal dialysis patients: A case control study. BMC Nephrol. 2020;21(1):1–11.
  • 4. Lo Q, Thomas L. Echocardiographic evaluation of diastolic heart failure. Australas J Ultrasound Med. 2010;13(1):14–26.
  • 5. Dokainish H. Left ventricular diastolic function and dysfunction: Central role of echocardiography. Glob Cardiol Sci Pract. 2015;2015(3).
  • 6. Dagmar F. Hernandez-Suarez Angel López-Candales. Strain Imaging Echocardiography: What Imaging Cardiologists Should Know. Curr Cardiol Rev. 2017;13(2):118–29.
  • 7. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39. e14.
  • 8. D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations. Eur J Echocardiogr. 2000;1(3):154–70.
  • 9. Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR, Fraser AG. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol. 2001;88(1):53–8.
  • 10. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: How helpful is it in clinical decision making?, Eur Heart J. Oxford University Press;2016;37:1196–1207b.
  • 11. Voigt JU, Cvijic M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc Imaging. 2019;12(9):1849–63.
  • 12. Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L. T hree-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc Diagn Ther. 2018;8(1):101–17.
  • 13. Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: Results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(8):833–40.
  • 14. Morrison I, Clark E, Macfarlane PW. Evaluation of the electrocardiographic criteria for left ventricular hypertrophy. Anadolu Kardiyol Derg. 2007;7(Suppl 1):159–63.
  • 15. Cameli M, Lisi M, Righini FM, Mondillo S. Novel echocardiographic techniques to assess left atrial size, anatomy and function. Cardiovasc Ultrasound. 2012;10(4).
  • 16. Bhatia RS, Tu J V, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of Heart Failure with Preserved Ejection Fraction in a Population-Based Study. N Engl J Med. 2006;355(3):260–9.
  • 17. Lam CSP, Lyass A, Kraigher-Krainer E, Massaro JM, Lee DS, Ho JE, et al. Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation. 2011;124(1):24–30.
  • 18. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure with Preserved Ejection Fraction in Perspective. Circulation Research. Circ Res;2019;124:1598–617.
  • 19. Støylen A, Skjelvan G, Skjaerpe T. Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function. Cardiovasc Ultrasound. 2003;1(3):1–10.
  • 20. Stoylen A, Slordahl S, Skjelvan GK, Heimdal A, Skjaerpe T. Strain rate imaging in normal and reduced diastolic function: Comparison with pulsed Doppler tissue imaging of the mitral annulus. J Am Soc Echocardiogr. 2001;14(4):264–74.
  • 21. Kimura K, Takenaka K, Ebihara A, Okano T, Uno K, Fukuda N, et al. Speckle Tracking Global Strain Rate E/E′ Predicts LV Filling Pressure More Accurately Than Traditional Tissue Doppler E/E′. Echocardiography. 2012;29(4):404–10.
  • 22. Ersbøll M, Andersen MJ, Valeur N, Mogensen UM, Fahkri Y, T hune JJ, et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: A two-dimensional speckle-tracking study. Eur Heart J. 2014;35(10):648–56.
  • 23. Ma H, Xie RA, Gao LJ, Zhang JP, Wu WC, Wang H. Prediction of Left Ventricular Filling Pressure by 3-Dimensional SpeckleTracking Echocardiography in Patients With Coronary Artery Disease. J Ultrasound Med. 2015;34(10):1809–18.
  • 24. Kasner M, Gaub R, Sinning D, Westermann D, Steendijk P, Hoffmann W, et al. Global strain rate imaging for the estimation of diastolic function in HFNEF compared with pressurevolume loop analysis. Eur J Echocardiogr. 2010;11(9):743–51

Yıl 2025, Cilt: 15 Sayı: 2, 199 - 207, 31.08.2025

Öz

Kaynakça

  • 1. Obokata M, Reddy YNV, Borlaug BA. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC. Cardiovascular Imaging. 2020;13(1 Pt 2):245–57.
  • 2. Lalande S, Johnson BD. Diastolic Dysfunction as a Link Between Hypertension and Heart Failure. Natl Libr Med. 2008;44(7):503–13.
  • 3. Zhu J, Shi F, You T, Tang C, Chen J. Global diastolic strain rate for the assessment of left ventricular diastolic dysfunction in young peritoneal dialysis patients: A case control study. BMC Nephrol. 2020;21(1):1–11.
  • 4. Lo Q, Thomas L. Echocardiographic evaluation of diastolic heart failure. Australas J Ultrasound Med. 2010;13(1):14–26.
  • 5. Dokainish H. Left ventricular diastolic function and dysfunction: Central role of echocardiography. Glob Cardiol Sci Pract. 2015;2015(3).
  • 6. Dagmar F. Hernandez-Suarez Angel López-Candales. Strain Imaging Echocardiography: What Imaging Cardiologists Should Know. Curr Cardiol Rev. 2017;13(2):118–29.
  • 7. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39. e14.
  • 8. D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, et al. Regional Strain and Strain Rate Measurements by Cardiac Ultrasound: Principles, Implementation and Limitations. Eur J Echocardiogr. 2000;1(3):154–70.
  • 9. Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR, Fraser AG. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol. 2001;88(1):53–8.
  • 10. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: How helpful is it in clinical decision making?, Eur Heart J. Oxford University Press;2016;37:1196–1207b.
  • 11. Voigt JU, Cvijic M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc Imaging. 2019;12(9):1849–63.
  • 12. Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L. T hree-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc Diagn Ther. 2018;8(1):101–17.
  • 13. Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: Results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(8):833–40.
  • 14. Morrison I, Clark E, Macfarlane PW. Evaluation of the electrocardiographic criteria for left ventricular hypertrophy. Anadolu Kardiyol Derg. 2007;7(Suppl 1):159–63.
  • 15. Cameli M, Lisi M, Righini FM, Mondillo S. Novel echocardiographic techniques to assess left atrial size, anatomy and function. Cardiovasc Ultrasound. 2012;10(4).
  • 16. Bhatia RS, Tu J V, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of Heart Failure with Preserved Ejection Fraction in a Population-Based Study. N Engl J Med. 2006;355(3):260–9.
  • 17. Lam CSP, Lyass A, Kraigher-Krainer E, Massaro JM, Lee DS, Ho JE, et al. Cardiac dysfunction and noncardiac dysfunction as precursors of heart failure with reduced and preserved ejection fraction in the community. Circulation. 2011;124(1):24–30.
  • 18. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure with Preserved Ejection Fraction in Perspective. Circulation Research. Circ Res;2019;124:1598–617.
  • 19. Støylen A, Skjelvan G, Skjaerpe T. Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function. Cardiovasc Ultrasound. 2003;1(3):1–10.
  • 20. Stoylen A, Slordahl S, Skjelvan GK, Heimdal A, Skjaerpe T. Strain rate imaging in normal and reduced diastolic function: Comparison with pulsed Doppler tissue imaging of the mitral annulus. J Am Soc Echocardiogr. 2001;14(4):264–74.
  • 21. Kimura K, Takenaka K, Ebihara A, Okano T, Uno K, Fukuda N, et al. Speckle Tracking Global Strain Rate E/E′ Predicts LV Filling Pressure More Accurately Than Traditional Tissue Doppler E/E′. Echocardiography. 2012;29(4):404–10.
  • 22. Ersbøll M, Andersen MJ, Valeur N, Mogensen UM, Fahkri Y, T hune JJ, et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: A two-dimensional speckle-tracking study. Eur Heart J. 2014;35(10):648–56.
  • 23. Ma H, Xie RA, Gao LJ, Zhang JP, Wu WC, Wang H. Prediction of Left Ventricular Filling Pressure by 3-Dimensional SpeckleTracking Echocardiography in Patients With Coronary Artery Disease. J Ultrasound Med. 2015;34(10):1809–18.
  • 24. Kasner M, Gaub R, Sinning D, Westermann D, Steendijk P, Hoffmann W, et al. Global strain rate imaging for the estimation of diastolic function in HFNEF compared with pressurevolume loop analysis. Eur J Echocardiogr. 2010;11(9):743–51
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Karakurt

Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 3 Şubat 2025
Kabul Tarihi 22 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 2

Kaynak Göster

APA Karakurt, A. (2025). Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function. Kafkas Journal of Medical Sciences, 15(2), 199-207.
AMA Karakurt A. Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function. KAFKAS TIP BİL DERG. Ağustos 2025;15(2):199-207.
Chicago Karakurt, Ahmet. “Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function”. Kafkas Journal of Medical Sciences 15, sy. 2 (Ağustos 2025): 199-207.
EndNote Karakurt A (01 Ağustos 2025) Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function. Kafkas Journal of Medical Sciences 15 2 199–207.
IEEE A. Karakurt, “Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function”, KAFKAS TIP BİL DERG, c. 15, sy. 2, ss. 199–207, 2025.
ISNAD Karakurt, Ahmet. “Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function”. Kafkas Journal of Medical Sciences 15/2 (Ağustos2025), 199-207.
JAMA Karakurt A. Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function. KAFKAS TIP BİL DERG. 2025;15:199–207.
MLA Karakurt, Ahmet. “Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function”. Kafkas Journal of Medical Sciences, c. 15, sy. 2, 2025, ss. 199-07.
Vancouver Karakurt A. Left Ventricular Diastolic Longitudinal Strain Angle as a Parameter (New Tool) to Predict Left Ventricular Diastolic Function. KAFKAS TIP BİL DERG. 2025;15(2):199-207.