BibTex RIS Kaynak Göster

Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin ve Spektral Verimliliğin Sağlanması için Çözüm

Yıl 2019, Cilt: 9 Sayı: 1, 152 - 165, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1305

Öz

Dikgen-Olmayan Çoklu Erişim Non-orthogonal Multiple Access -NOMA , Gelecek Nesil Radyo Erişim Future Radio Access -FRA ağları için önemli isterler olan kitlesel bağlantı ve yüksek spektral verimliliğe cevap verebilme potansiyeline sahiptir. NOMA’daki temel fikir, kullanıcıların işaretlerini güç veya kod ekseninde farklı değerlerle, aynı zaman ve frekans bandında radyo kaynağı-radio resource iletişimin sağlanmasıdır. NOMA ayrıca literatürde önerilen diğer 5G fiziksel seviye teknikleri olan MIMO, işbirlikli iletişim, milimetre dalga haberleşmesi, bilişsel radyo vb. tekniklerle beraber de kullanılabilmektedir. Bu çalışmada, güç eksenli power domain -PD NOMA’nın temel prensipleri tanıtılarak güncel çalışmaların bir özeti sunulmuştur. PD-NOMA ile geleneksel Dikgen Çoklu Erişim Orthogonal Multiple Access -OMA tekniklerinin kesinti olasılığı ve kapasite başarımları bakımından karşılaştırılmaları hem aşağı yönlü downlink hem de yukarı yönlü iletişim uplink için gösterilmiştir. Daha sonra, işbirlikli iletişim ile PD-NOMA’nın birlikte kullanıldığı uygulamalar ele alınarak bu konudaki literatürde yapılan çalışmalar sunulmuştur. PD-NOMA için gelecek çalışmalar ve zorluklar FRA ağları isterleri açısından tartışılmıştır

Kaynakça

  • 1. Agiwal, M., Roy, A., Saxena, N. 2016. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutorials, 18: 1617–1655.
  • 2. Al-Imari, M., Xiao, P., Imran, MA., Tafazolli, R. 2014. Uplink Non-Orthogonal Multiple Access for 5G Wireless Networks. 11th Int. Symp. Wirel. Commun. Syst., pp: 781–785.
  • 3. Al-Imari, M., Xiao, P., Imran, MA. 2015. Receiver and resource allocation optimization for uplink NOMA in 5G wireless networks. Proc. Int. Symp. Wirel. Commun. Syst., pp: 151–155.
  • 4. Ali, M. S., Tabassum, H., Hossain, E. 2016. Dynamic User Clustering and Power Allocation for Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) Systems. IEEE Access, 4: 6325–6343.
  • 5. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, ACK., Zhang JC. 2014. What will 5G be?. IEEE J. Sel. Areas Commun., 32: 1065–1082.
  • 6. Benjebbour, A., Li, A., Kishiyama, Y., Jiang, H., Nakamura, T. 2014. System-level performance of downlink NOMA combined with SU-MIMO for future LTE enhancements. IEEE Globecom Work. GC Wkshps, pp: 706–710.
  • 7. Benjebbour, A., Saito, K., Li, A., Kishiyama, Y., Nakamura, T. 2015. Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials. Int. Conf. Wirel. Networks Mob. Commun. WINCOM, pp: 1–6.
  • 8. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., Nakamura, T. 2013. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. ISPACS - Int. Symp. Intell. Signal Process. Commun. Syst., pp. 770–774.
  • 9. Chen, S., Peng, K., Jin, H. 2015. A suboptimal scheme for uplink NOMA in 5G systems. IWCMC - 11th Int. Wirel. Commun. Mob. Comput. Conf., pp: 1429–1434.
  • 10. Choi, J. 2014. Non-orthogonal multiple access in downlink coordinated two-point systems, IEEE Commun. Lett., 18: 313–316.
  • 11. Clerckx, B., Lozano, A., Sesia, S., van Rensburg, C., Papadias, C. 2009. 3GPP LTE and LTE-Advanced. EURASIP J. Wirel. Commun. Netw., 2009:472124.
  • 12. Cui, J., Ding, Z., Fan, P. 2016. A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Process. Lett., 23: 1226–1230.
  • 13. Dai, L., Wang, B., Yuan, Y., Han, S., I, CL., Wang, Z. 2015. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53: 74–81.
  • 14. Diamantoulakis, PD., Pappi, KN., Ding, Z., Karagiannidis, GK. 2016. Wireless-Powered Communications With NonOrthogonal Multiple Access, IEEE Trans. Wirel. Commun., 15: 8422–8436.
  • 15. Ding, Z., Dai, H., Poor, HV. 2016, Relay Selection for Cooperative NOMA. IEEE Trans. Veh. Technol., 5: 416–419.
  • 16. Ding, Z., Lei, X., Karagiannidis, GK., Schober, R., Yuan, J., Bhargava, VK. 2017, A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends. IEEE J. Sel. Areas Commun., 35: 2181–2195. , 17. Ding, Z., Peng, M., Poor, HV. 2015. Cooperative NonOrthogonal Multiple Access in 5G Systems. IEEE Commun. Lett., 19: 1462–1465.
  • 18. Ding, Z., Schober, R., Poor, HV. 2016. A General MIMO Framework for NOMA Downlink and Uplink Transmission Based on Signal Alignment. IEEE Trans. Wirel. Commun., 15: 4438–4454.
  • 19. Ding, Z., Yang, Z., Fan, P., Member, S., Poor, HV. 2014. On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users, IEEE Signal Process. Lett., 21: 1501–1505.
  • 20. Duan, W., Wen, M., Yan, Y., Xiong, Z., Lee, MH. 2016. Use of Non-Orthogonal Multiple Access in Dual-hop relaying, arXivID:1604.01151.
  • 21. Foukas, X., Patounas, G., Elmokashfi, A., Marina, MK 2017. Network Slicing in 5G: Survey and Challenges. IEEE Commun. Mag., 55: 94–100.
  • 22. Haci, H., Zhu, H., Wang, J. 2017. Performance of nonorthogonal multiple access with a novel asynchronous interference cancellation technique. IEEE Trans. Commun., 65: 1319–1335.
  • 23. Higuchi, K., Benjebbour, A. 2015. Non-orthogonal Multiple Access ( NOMA ) with Successive Interference Cancellation for Future Radio Access. IEICE Trans. Commun., E98-B: 403–414.
  • 24. Islam, S. M. R., Avazov, N., Dobre, OA., Kwak, KS. 2017. Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Commun. Surv. Tutorials, 19: 721–742.
  • 25. Kim, J.-B., Lee, IH. 2015. Capacity Analysis of Cooperative Relaying Systems Using Non-Orthogonal Multiple Access. IEEE Commun. Lett., 19: 1949–1952.
  • 26. Liu, F., Mahonen, P., Petrova, M. 2016. Proportional fairness-based power allocation and user set selection for downlink NOMA systems. IEEE Int. Conf. Commun. ICC.
  • 27. Liu, Y., Ding, Z., Elkashlan, M., Poor, HV. 2016. Cooperative Non-orthogonal Multiple Access with Simultaneous Wireless Information and Power Transfer, IEEE J. Sel. Areas Commun., 34: 938–953.
  • 28. Liu, Y., Pan, G., Zhang, H., Song, M. 2016. Hybrid DecodeForward Amplify-Forward Relaying with Non-Orthogonal Multiple Access. IEEE Access, 4: 4912–4921.
  • 29. Luo, S., Teh, KC. 2017. Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun. Lett., 21: 937–940.
  • 30. Ma, Z., Zhang, Z., Ding, Z., Fan, P., Li, H. 2015. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci. China Inf. Sci., 58: 1–20.
  • 31. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Toaka, H., Tullberg, H., Uusitalo, M. A., Timus, B., Fallgren, M. 2014. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag., 52: 26–35.
  • 32. Oviedo, JA., Sadjadpour, HR. 2017. A Fair Power Allocation Approach to NOMA in Multiuser SISO Systems. IEEE Trans. Veh. Technol., 66: 7974–7985.
  • 33. Proakis, JG. 2008. Digital Communications, McGraw-Hill, 5th. edition New York, USA, 1150 pp.
  • 34. Saito, Y., Benjebbour, A., Kishiyama, Y., Nakamura, T. 2013. System-level performance evaluation of downlink nonorthogonal multiple access (NOMA). IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, pp: 611–615.
  • 35. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuchi, K. 2013. Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. IEEE 77th Veh. Technol. Conf. (VTC Spring), pp: 1–5.
  • 36. Shannon, CE. 1956. The Zero-Error Capacity of a Noisy Channel. IRE Trans. Inf. Theory, 2: 8–19.
  • 37. Shi, S., Yang, L., Zhu, H. 2016. Outage Balancing in Downlink Nonorthogonal Multiple Access with Statistical Channel State Information. IEEE Trans. Wirel. Commun., 15:4718–4731.
  • 38. Shieh, SL., Huang, YC. 2016. A simple scheme for realizing the promised gains of downlink nonorthogonal multiple access. IEEE Trans. Commun., 64:1624–1635.
  • 39. Tabassum, H., Ali, MS., Hossain, E., Hossain, MJ., Kim, DI. 2016. Non-Orthogonal Multiple Access (NOMA) in Cellular Uplink and Downlink: Challenges and Enabling Techniques, arXivID:1608.05783v1
  • 40. Timotheou, S., Krikidis, I. 2015. Fairness for NonOrthogonal Multiple Access in 5G Systems. IEEE Signal Process. Lett., 22: 1647–1651.
  • 41. Verdu, S. 1998. Multiuser Detection, Cambridge Univ. Press, Cambrige, UK, 440 pp.
  • 42. Wang, X., Labeau, F., Mei, L. 2017. Closed-Form BER Expressions of QPSK Constellation for Uplink NonOrthogonal Multiple Access, IEEE Commun. Lett., 21: 2242– 2245.
  • 43. Wang, X., Poor, HV. 2004. Wireless communication systems : advanced techniques for signal reception, Prentice Hall, 1st edition New Jersey, USA, 704 pp.
  • 44. Xu, M., Ji, F., Wen, M., Duan, W. 2016. Novel Receiver Design for the Cooperative Relaying System with NonOrthogonal Multiple Access. IEEE Commun. Lett., 20: 1679– 1682.
  • 45. Yang, M., Hsieh, H. 2015. Moving Towards Non-Orthogonal Multiple Access in Next-Generation Wireless Access Networks, IEEE Next Gener. Netw. Symp., pp: 7262–7267.
  • 46. Yang, Z., Ding, Z., Fan, P., Al-Dhahir, N. 2016. A General Power Allocation Scheme to Guarantee Quality of Service in Downlink and Uplink NOMA Systems. IEEE Trans. Wirel. Commun., 15: 7244–7257.
  • 47. Yang, Z., Ding, Z., Fan, P., Karagiannidis, GK. 2016. On the Performance of Non-orthogonal Multiple Access Systems With Partial Channel Information. IEEE Trans. Commun., 64: 654–667.
  • 48. Zhang, N., Wang, J., Kang, G., Liu, Y. 2016. Uplink Nonorthogonal Multiple Access in 5G Systems. IEEE Commun. Lett., 20: 458–461.
  • 49. Zhang, Y., Wang, HM., Zheng, TX., Yang, Q. 2017. EnergyEfficient Transmission Design in Non-orthogonal Multiple Access. IEEE Trans. Veh. Technol., 66: 2852–2857.
  • 50. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., Fan, P. 2017. Fullduplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Trans. Veh. Technol., 66: 4467–4471.
  • 51. Zheng, B., Wang, X., Wen, M., Chen, F. 2017. NOMABased Multi-Pair Two-Way Relay Networks with Rate Splitting and Group Decoding. IEEE J. Sel. Areas Commun., 35: 2328–2341.
  • 52. Zhong, C., Zhang, Z. 2016. Non-Orthogonal Multiple Access with Cooperative Full-Duplex Relaying. IEEE Commun. Lett., 20: 2478–2481.

Non-Orthogonal Multiple Access NOMA : Solution to Massive Connectivity and High Spectral Efficiency for Future Radio Access FRA Networks

Yıl 2019, Cilt: 9 Sayı: 1, 152 - 165, 01.01.2019
https://doi.org/10.7212/zkufbd.v9i1.1305

Öz

Non-Orthogonal Multiple Access NOMA has great potential to support massive connectivity and high spectral efficiency which are highly demanded by the Future Radio Access FRA Networks. The main idea of NOMA is to transmit signals of the multiple users on the same radio resources such as time slot and frequency band by splitting them into power or code domain. NOMA also supports the interplay with the other proposed 5G physical layer techniques such as, MIMO, cooperative communication, milimeter wave communication, cognitive radio etc. This review provides basic power domain PD -NOMA principles and recent PD-NOMA research. The comparison of PD-NOMA with the conventional Orthogonal Multiple Access OMA techniques is presented by the means of outage and capacity performances for both uplink and downlink. Then, PD-NOMA and cooperative communication applications are discussed and the existed literature for this special issue is presented. Future research directions and challenges of PD-NOMA are also discussed for the FRA networks

Kaynakça

  • 1. Agiwal, M., Roy, A., Saxena, N. 2016. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutorials, 18: 1617–1655.
  • 2. Al-Imari, M., Xiao, P., Imran, MA., Tafazolli, R. 2014. Uplink Non-Orthogonal Multiple Access for 5G Wireless Networks. 11th Int. Symp. Wirel. Commun. Syst., pp: 781–785.
  • 3. Al-Imari, M., Xiao, P., Imran, MA. 2015. Receiver and resource allocation optimization for uplink NOMA in 5G wireless networks. Proc. Int. Symp. Wirel. Commun. Syst., pp: 151–155.
  • 4. Ali, M. S., Tabassum, H., Hossain, E. 2016. Dynamic User Clustering and Power Allocation for Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) Systems. IEEE Access, 4: 6325–6343.
  • 5. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, ACK., Zhang JC. 2014. What will 5G be?. IEEE J. Sel. Areas Commun., 32: 1065–1082.
  • 6. Benjebbour, A., Li, A., Kishiyama, Y., Jiang, H., Nakamura, T. 2014. System-level performance of downlink NOMA combined with SU-MIMO for future LTE enhancements. IEEE Globecom Work. GC Wkshps, pp: 706–710.
  • 7. Benjebbour, A., Saito, K., Li, A., Kishiyama, Y., Nakamura, T. 2015. Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials. Int. Conf. Wirel. Networks Mob. Commun. WINCOM, pp: 1–6.
  • 8. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., Nakamura, T. 2013. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. ISPACS - Int. Symp. Intell. Signal Process. Commun. Syst., pp. 770–774.
  • 9. Chen, S., Peng, K., Jin, H. 2015. A suboptimal scheme for uplink NOMA in 5G systems. IWCMC - 11th Int. Wirel. Commun. Mob. Comput. Conf., pp: 1429–1434.
  • 10. Choi, J. 2014. Non-orthogonal multiple access in downlink coordinated two-point systems, IEEE Commun. Lett., 18: 313–316.
  • 11. Clerckx, B., Lozano, A., Sesia, S., van Rensburg, C., Papadias, C. 2009. 3GPP LTE and LTE-Advanced. EURASIP J. Wirel. Commun. Netw., 2009:472124.
  • 12. Cui, J., Ding, Z., Fan, P. 2016. A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Process. Lett., 23: 1226–1230.
  • 13. Dai, L., Wang, B., Yuan, Y., Han, S., I, CL., Wang, Z. 2015. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53: 74–81.
  • 14. Diamantoulakis, PD., Pappi, KN., Ding, Z., Karagiannidis, GK. 2016. Wireless-Powered Communications With NonOrthogonal Multiple Access, IEEE Trans. Wirel. Commun., 15: 8422–8436.
  • 15. Ding, Z., Dai, H., Poor, HV. 2016, Relay Selection for Cooperative NOMA. IEEE Trans. Veh. Technol., 5: 416–419.
  • 16. Ding, Z., Lei, X., Karagiannidis, GK., Schober, R., Yuan, J., Bhargava, VK. 2017, A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends. IEEE J. Sel. Areas Commun., 35: 2181–2195. , 17. Ding, Z., Peng, M., Poor, HV. 2015. Cooperative NonOrthogonal Multiple Access in 5G Systems. IEEE Commun. Lett., 19: 1462–1465.
  • 18. Ding, Z., Schober, R., Poor, HV. 2016. A General MIMO Framework for NOMA Downlink and Uplink Transmission Based on Signal Alignment. IEEE Trans. Wirel. Commun., 15: 4438–4454.
  • 19. Ding, Z., Yang, Z., Fan, P., Member, S., Poor, HV. 2014. On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users, IEEE Signal Process. Lett., 21: 1501–1505.
  • 20. Duan, W., Wen, M., Yan, Y., Xiong, Z., Lee, MH. 2016. Use of Non-Orthogonal Multiple Access in Dual-hop relaying, arXivID:1604.01151.
  • 21. Foukas, X., Patounas, G., Elmokashfi, A., Marina, MK 2017. Network Slicing in 5G: Survey and Challenges. IEEE Commun. Mag., 55: 94–100.
  • 22. Haci, H., Zhu, H., Wang, J. 2017. Performance of nonorthogonal multiple access with a novel asynchronous interference cancellation technique. IEEE Trans. Commun., 65: 1319–1335.
  • 23. Higuchi, K., Benjebbour, A. 2015. Non-orthogonal Multiple Access ( NOMA ) with Successive Interference Cancellation for Future Radio Access. IEICE Trans. Commun., E98-B: 403–414.
  • 24. Islam, S. M. R., Avazov, N., Dobre, OA., Kwak, KS. 2017. Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Commun. Surv. Tutorials, 19: 721–742.
  • 25. Kim, J.-B., Lee, IH. 2015. Capacity Analysis of Cooperative Relaying Systems Using Non-Orthogonal Multiple Access. IEEE Commun. Lett., 19: 1949–1952.
  • 26. Liu, F., Mahonen, P., Petrova, M. 2016. Proportional fairness-based power allocation and user set selection for downlink NOMA systems. IEEE Int. Conf. Commun. ICC.
  • 27. Liu, Y., Ding, Z., Elkashlan, M., Poor, HV. 2016. Cooperative Non-orthogonal Multiple Access with Simultaneous Wireless Information and Power Transfer, IEEE J. Sel. Areas Commun., 34: 938–953.
  • 28. Liu, Y., Pan, G., Zhang, H., Song, M. 2016. Hybrid DecodeForward Amplify-Forward Relaying with Non-Orthogonal Multiple Access. IEEE Access, 4: 4912–4921.
  • 29. Luo, S., Teh, KC. 2017. Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun. Lett., 21: 937–940.
  • 30. Ma, Z., Zhang, Z., Ding, Z., Fan, P., Li, H. 2015. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci. China Inf. Sci., 58: 1–20.
  • 31. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Toaka, H., Tullberg, H., Uusitalo, M. A., Timus, B., Fallgren, M. 2014. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag., 52: 26–35.
  • 32. Oviedo, JA., Sadjadpour, HR. 2017. A Fair Power Allocation Approach to NOMA in Multiuser SISO Systems. IEEE Trans. Veh. Technol., 66: 7974–7985.
  • 33. Proakis, JG. 2008. Digital Communications, McGraw-Hill, 5th. edition New York, USA, 1150 pp.
  • 34. Saito, Y., Benjebbour, A., Kishiyama, Y., Nakamura, T. 2013. System-level performance evaluation of downlink nonorthogonal multiple access (NOMA). IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, pp: 611–615.
  • 35. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., Higuchi, K. 2013. Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. IEEE 77th Veh. Technol. Conf. (VTC Spring), pp: 1–5.
  • 36. Shannon, CE. 1956. The Zero-Error Capacity of a Noisy Channel. IRE Trans. Inf. Theory, 2: 8–19.
  • 37. Shi, S., Yang, L., Zhu, H. 2016. Outage Balancing in Downlink Nonorthogonal Multiple Access with Statistical Channel State Information. IEEE Trans. Wirel. Commun., 15:4718–4731.
  • 38. Shieh, SL., Huang, YC. 2016. A simple scheme for realizing the promised gains of downlink nonorthogonal multiple access. IEEE Trans. Commun., 64:1624–1635.
  • 39. Tabassum, H., Ali, MS., Hossain, E., Hossain, MJ., Kim, DI. 2016. Non-Orthogonal Multiple Access (NOMA) in Cellular Uplink and Downlink: Challenges and Enabling Techniques, arXivID:1608.05783v1
  • 40. Timotheou, S., Krikidis, I. 2015. Fairness for NonOrthogonal Multiple Access in 5G Systems. IEEE Signal Process. Lett., 22: 1647–1651.
  • 41. Verdu, S. 1998. Multiuser Detection, Cambridge Univ. Press, Cambrige, UK, 440 pp.
  • 42. Wang, X., Labeau, F., Mei, L. 2017. Closed-Form BER Expressions of QPSK Constellation for Uplink NonOrthogonal Multiple Access, IEEE Commun. Lett., 21: 2242– 2245.
  • 43. Wang, X., Poor, HV. 2004. Wireless communication systems : advanced techniques for signal reception, Prentice Hall, 1st edition New Jersey, USA, 704 pp.
  • 44. Xu, M., Ji, F., Wen, M., Duan, W. 2016. Novel Receiver Design for the Cooperative Relaying System with NonOrthogonal Multiple Access. IEEE Commun. Lett., 20: 1679– 1682.
  • 45. Yang, M., Hsieh, H. 2015. Moving Towards Non-Orthogonal Multiple Access in Next-Generation Wireless Access Networks, IEEE Next Gener. Netw. Symp., pp: 7262–7267.
  • 46. Yang, Z., Ding, Z., Fan, P., Al-Dhahir, N. 2016. A General Power Allocation Scheme to Guarantee Quality of Service in Downlink and Uplink NOMA Systems. IEEE Trans. Wirel. Commun., 15: 7244–7257.
  • 47. Yang, Z., Ding, Z., Fan, P., Karagiannidis, GK. 2016. On the Performance of Non-orthogonal Multiple Access Systems With Partial Channel Information. IEEE Trans. Commun., 64: 654–667.
  • 48. Zhang, N., Wang, J., Kang, G., Liu, Y. 2016. Uplink Nonorthogonal Multiple Access in 5G Systems. IEEE Commun. Lett., 20: 458–461.
  • 49. Zhang, Y., Wang, HM., Zheng, TX., Yang, Q. 2017. EnergyEfficient Transmission Design in Non-orthogonal Multiple Access. IEEE Trans. Veh. Technol., 66: 2852–2857.
  • 50. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., Fan, P. 2017. Fullduplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Trans. Veh. Technol., 66: 4467–4471.
  • 51. Zheng, B., Wang, X., Wen, M., Chen, F. 2017. NOMABased Multi-Pair Two-Way Relay Networks with Rate Splitting and Group Decoding. IEEE J. Sel. Areas Commun., 35: 2328–2341.
  • 52. Zhong, C., Zhang, Z. 2016. Non-Orthogonal Multiple Access with Cooperative Full-Duplex Relaying. IEEE Commun. Lett., 20: 2478–2481.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Hakan Kaya Bu kişi benim

Ferdi Kara Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster

APA Kaya, H., & Kara, F. (2019). Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin ve Spektral Verimliliğin Sağlanması için Çözüm. Karaelmas Fen Ve Mühendislik Dergisi, 9(1), 152-165. https://doi.org/10.7212/zkufbd.v9i1.1305
AMA Kaya H, Kara F. Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin ve Spektral Verimliliğin Sağlanması için Çözüm. Karaelmas Fen ve Mühendislik Dergisi. Ocak 2019;9(1):152-165. doi:10.7212/zkufbd.v9i1.1305
Chicago Kaya, Hakan, ve Ferdi Kara. “Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin Ve Spektral Verimliliğin Sağlanması için Çözüm”. Karaelmas Fen Ve Mühendislik Dergisi 9, sy. 1 (Ocak 2019): 152-65. https://doi.org/10.7212/zkufbd.v9i1.1305.
EndNote Kaya H, Kara F (01 Ocak 2019) Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin ve Spektral Verimliliğin Sağlanması için Çözüm. Karaelmas Fen ve Mühendislik Dergisi 9 1 152–165.
IEEE H. Kaya ve F. Kara, “Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin ve Spektral Verimliliğin Sağlanması için Çözüm”, Karaelmas Fen ve Mühendislik Dergisi, c. 9, sy. 1, ss. 152–165, 2019, doi: 10.7212/zkufbd.v9i1.1305.
ISNAD Kaya, Hakan - Kara, Ferdi. “Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin Ve Spektral Verimliliğin Sağlanması için Çözüm”. Karaelmas Fen ve Mühendislik Dergisi 9/1 (Ocak 2019), 152-165. https://doi.org/10.7212/zkufbd.v9i1.1305.
JAMA Kaya H, Kara F. Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin ve Spektral Verimliliğin Sağlanması için Çözüm. Karaelmas Fen ve Mühendislik Dergisi. 2019;9:152–165.
MLA Kaya, Hakan ve Ferdi Kara. “Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin Ve Spektral Verimliliğin Sağlanması için Çözüm”. Karaelmas Fen Ve Mühendislik Dergisi, c. 9, sy. 1, 2019, ss. 152-65, doi:10.7212/zkufbd.v9i1.1305.
Vancouver Kaya H, Kara F. Dikgen Olmayan Çoklu Erişim NOMA : Gelecek Nesil Radyo Erişim Ağlarında Kitlesel Erişimin ve Spektral Verimliliğin Sağlanması için Çözüm. Karaelmas Fen ve Mühendislik Dergisi. 2019;9(1):152-65.