BibTex RIS Kaynak Göster

Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı

Yıl 2017, Cilt: 7 Sayı: 2, 349 - 351, 01.06.2017

Öz

Sıfırlanan polinomlar, katsayı halkası üzerinde tanımlanan polinom halkalarının bir idealini oluştururlar. Bu makalede m,l ≠1 olmak üzere Zidealinin açık minimal güçlü Gröbner tabanını vereceğiz. İspatımız tamamen kobinasyonel yönteme dayalı olacaktır

Kaynakça

  • Aoki, S., Hibi, T., Ohsugi, H., Takemura, A. 2010. Markov basis and Gröbner basis of Segre– Veronese configuration for testing independence in group-wise selections. Ann. Inst. Stat. Math., 62: 299– 321.
  • Buchberger, B. 1965. An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal, PhD thesis, Univ. of Innsbruck (Austria), 36 pp.
  • Conti, P., Traverso, C. 1991. Buchberger algorithm and integer progamming, In: Mattson, H., Mora, T., Rao, T. [eds.], Applied Algebra Algebraic Algorithms and Error Correcting Codes. Lecture Notes in Computer Science, Springer, Berlin, vol. 539, pp. 130-139.
  • De Loera, Jesşs A. 1995. Gröbner bases and graph colorings. Beiträge Algebra Geom., 1995: 36 (1): 89-96.
  • Grayson, DR., Stillman, ME. 01 August 2016. Macaulay 2, a software system for research in algebraic geometry. http:// www.math.uiuc.edu/Macaulay2/
  • Greuel, GM., Seelisch, F., Wienand, O. 2011. The Gröbner basis of the ideal of vanishing polynomials. J. Symbolic Comput., 46: 561-570.
  • Greuel, GM., Wedler, M., Wienand, O., Brickenstein, M., Dreyer, A. 2008. New developments in the theory of Groebner bases and applications to formal verification. J. Pure Appl. Algebra, 213(8): 1612-1635.
  • Hironaka, H. 1964. Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math., 79: 109– 203.
  • Macaulay, F.S. 1927. Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc., 26: 531- 555.
  • Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S. 2005. Equivalence verification of polynomial datapaths with fixed- size bitvectors using finite ring algebra. In the proceedings of the 2005 IEEE/ACM International Conference on Computeraided Design, pp: 291– 296.
  • Sturmfels, B. 1996. Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, 162 pp.
  • Wienand, O., Wedler, M., Stoffel, D., Kunz, W., Greuel, GM. 2008. An algebraic approach for proving data correctness in arithmetic data paths. In the proceedings of the 20th International Conference on Computer Aided Verification, pp: 473– 486.

Explicit Gröbner Basis of the Ideal of Vanishing Polynomials over Z2×Z2

Yıl 2017, Cilt: 7 Sayı: 2, 349 - 351, 01.06.2017

Öz

Vanishing polynomials form an ideal of polynomial ring over the coefficient ring. In this paper, we give some vanishing polynomials of the polynomial ring Zm×Zl[x1,x2,…,xn] where m,l ≠1 and an explicit minimal strong Gröbner basis of the ideal of vanishing polynomials of the ring Z2×Z2[x]. Our proof is based fully on a combinatorial way.

Kaynakça

  • Aoki, S., Hibi, T., Ohsugi, H., Takemura, A. 2010. Markov basis and Gröbner basis of Segre– Veronese configuration for testing independence in group-wise selections. Ann. Inst. Stat. Math., 62: 299– 321.
  • Buchberger, B. 1965. An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal, PhD thesis, Univ. of Innsbruck (Austria), 36 pp.
  • Conti, P., Traverso, C. 1991. Buchberger algorithm and integer progamming, In: Mattson, H., Mora, T., Rao, T. [eds.], Applied Algebra Algebraic Algorithms and Error Correcting Codes. Lecture Notes in Computer Science, Springer, Berlin, vol. 539, pp. 130-139.
  • De Loera, Jesşs A. 1995. Gröbner bases and graph colorings. Beiträge Algebra Geom., 1995: 36 (1): 89-96.
  • Grayson, DR., Stillman, ME. 01 August 2016. Macaulay 2, a software system for research in algebraic geometry. http:// www.math.uiuc.edu/Macaulay2/
  • Greuel, GM., Seelisch, F., Wienand, O. 2011. The Gröbner basis of the ideal of vanishing polynomials. J. Symbolic Comput., 46: 561-570.
  • Greuel, GM., Wedler, M., Wienand, O., Brickenstein, M., Dreyer, A. 2008. New developments in the theory of Groebner bases and applications to formal verification. J. Pure Appl. Algebra, 213(8): 1612-1635.
  • Hironaka, H. 1964. Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math., 79: 109– 203.
  • Macaulay, F.S. 1927. Some properties of enumeration in the theory of modular systems. Proc. London Math. Soc., 26: 531- 555.
  • Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S. 2005. Equivalence verification of polynomial datapaths with fixed- size bitvectors using finite ring algebra. In the proceedings of the 2005 IEEE/ACM International Conference on Computeraided Design, pp: 291– 296.
  • Sturmfels, B. 1996. Gröbner Bases and Convex Polytopes, Amer. Math. Soc., Providence, 162 pp.
  • Wienand, O., Wedler, M., Stoffel, D., Kunz, W., Greuel, GM. 2008. An algebraic approach for proving data correctness in arithmetic data paths. In the proceedings of the 20th International Conference on Computer Aided Verification, pp: 473– 486.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Abdullah Çağman Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2

Kaynak Göster

APA Çağman, A. (2017). Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı. Karaelmas Fen Ve Mühendislik Dergisi, 7(2), 349-351.
AMA Çağman A. Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2017;7(2):349-351.
Chicago Çağman, Abdullah. “Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı”. Karaelmas Fen Ve Mühendislik Dergisi 7, sy. 2 (Haziran 2017): 349-51.
EndNote Çağman A (01 Haziran 2017) Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı. Karaelmas Fen ve Mühendislik Dergisi 7 2 349–351.
IEEE A. Çağman, “Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı”, Karaelmas Fen ve Mühendislik Dergisi, c. 7, sy. 2, ss. 349–351, 2017.
ISNAD Çağman, Abdullah. “Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı”. Karaelmas Fen ve Mühendislik Dergisi 7/2 (Haziran 2017), 349-351.
JAMA Çağman A. Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı. Karaelmas Fen ve Mühendislik Dergisi. 2017;7:349–351.
MLA Çağman, Abdullah. “Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı”. Karaelmas Fen Ve Mühendislik Dergisi, c. 7, sy. 2, 2017, ss. 349-51.
Vancouver Çağman A. Üzerinde Sıfırlanan Polinomların İdealinin Açık Gröbner Tabanı. Karaelmas Fen ve Mühendislik Dergisi. 2017;7(2):349-51.