Araştırma Makalesi
BibTex RIS Kaynak Göster

Narayana ve Narayana-Lucas Sayılarının Matris Dizileri

Yıl 2021, Cilt: 11 Sayı: 1, 83 - 90, 09.06.2021

Öz

Bu makalede, Narayana ve Narayana-Lucas matris dizileri tanımlandı ve özellikleri incelendi.

Kaynakça

  • Referans1. Cerda-Morales, G., 2019. On the Third-Order Jacobsthal and Third-Order Jacobsthal–Lucas Sequences and Their Matrix Rep-resentations. Mediterranean Journal of Mathematics, 16: 1-12.
  • Referans2. Civciv, H., Turkmen, R., 2008. On the (s; t)-Fibonacci and Fibonacci matrix sequences, Ars Combin. 87: 161-173.
  • Referans3. Civciv, H., Turkmen, R., 2008. Notes on the (s; t)-Lucas and Lucas matrix sequences, Ars Combin. 89: 271-285.
  • Referans4. Gulec, H.H., Taskara, N., 2012. On the (s; t)-Pell and (s; t)-Pell-Lucas sequences and their matrix representations, Appl. Math. Lett. 25: 1554-1559, doi.org/10.1016/j.aml.2012.01.014.
  • Referans5. Sloane, N.J.A., The on-line encyclopedia of integer sequences. Available: http://oeis.org/
  • Referans6. Soykan, Y., 2019. Matrix Sequences of Tetranacci and Tetranacci-Lucas Numbers, Int. J. Adv. Appl. Math. and Mech. 7 (2): 57-69.
  • Referans7. Soykan, Y., 2020. Matrix Sequences of Tribonacci and Tribonacci-Lucas Numbers, Communications in Mathematics and Appli-cations, 11 (2): 281-295, DOI: 10.26713/cma.v11i2.1102
  • Referans8. Soykan, Y., 2020a. Tribonacci and Tribonacci-Lucas Matrix Sequences with Negative Subscripts, Communications in Mathematics and Applications, 11 (1): 141159, DOI: 10.26713/cma.v11i1.1103.
  • Referans9. Soykan Y., 2020b. On Generalized Narayana Numbers, Int. J. Adv. Appl. Math. and Mech. 7(3): 43-56, (ISSN: 2347-2529).
  • Referans10. Uslu, K., Uygun, S., 2013. On the (s,t) Jacobsthal and (s,t) Jacobsthal-Lucas Matrix Sequences, Ars Combin. 108: 13-22.
  • Referans11. Uygun, S¸., Uslu, K., 2015. (s,t)-Generalized Jacobsthal Matrix Sequences, Springer Proceedings in Mathematics&Statistics, Computational Analysis, Amat, Ankara, 325-336.
  • Referans12. Uygun, S¸., 2016. Some Sum Formulas of (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas Matrix Sequences, Applied Mathematics, 7: 61-69, http://dx.doi.org/10.4236/am.2016.71005.
  • Referans13. Uygun, S., 2019. The binomial transforms of the generalized (s,t)-Jacobsthal matrix sequence, Int. J. Adv. Appl. Math. and Mech. 6 (3): 14–20.
  • Referans14. Yazlik, Y., Taskara, N., Uslu K., Yilmaz, N., 2012. The generalized (s; t)-sequence and its matrix sequence, Am. Inst. Phys. (AIP) Conf. Proc. 1389: 381-384, https://doi.org/10.1063/1.3636742.
  • Referans15. Yilmaz, N., Taskara, N., 2013. Matrix Sequences in Terms of Padovan and Perrin Numbers, Journal of Applied Mathematics, Volume 2013 Article ID 941673, 7, http://dx.doi.org/10.1155/2013/941673.
  • Referans16. Yilmaz, N., Taskara, N., 2014. On the Negatively Subscripted Padovan and Perrin Matrix Sequences, Communications in Mathematics and Applications, 5 (2): 59-72.
  • Referans17. Wani, A.A., Badshah, V.H., and Rathore, G.B.S., 2018. Generalized Fibonacci and k-Pell Matrix Sequences, Punjab University J. of Mathematics, 50 (1): 68-79.
Yıl 2021, Cilt: 11 Sayı: 1, 83 - 90, 09.06.2021

Öz

Kaynakça

  • Referans1. Cerda-Morales, G., 2019. On the Third-Order Jacobsthal and Third-Order Jacobsthal–Lucas Sequences and Their Matrix Rep-resentations. Mediterranean Journal of Mathematics, 16: 1-12.
  • Referans2. Civciv, H., Turkmen, R., 2008. On the (s; t)-Fibonacci and Fibonacci matrix sequences, Ars Combin. 87: 161-173.
  • Referans3. Civciv, H., Turkmen, R., 2008. Notes on the (s; t)-Lucas and Lucas matrix sequences, Ars Combin. 89: 271-285.
  • Referans4. Gulec, H.H., Taskara, N., 2012. On the (s; t)-Pell and (s; t)-Pell-Lucas sequences and their matrix representations, Appl. Math. Lett. 25: 1554-1559, doi.org/10.1016/j.aml.2012.01.014.
  • Referans5. Sloane, N.J.A., The on-line encyclopedia of integer sequences. Available: http://oeis.org/
  • Referans6. Soykan, Y., 2019. Matrix Sequences of Tetranacci and Tetranacci-Lucas Numbers, Int. J. Adv. Appl. Math. and Mech. 7 (2): 57-69.
  • Referans7. Soykan, Y., 2020. Matrix Sequences of Tribonacci and Tribonacci-Lucas Numbers, Communications in Mathematics and Appli-cations, 11 (2): 281-295, DOI: 10.26713/cma.v11i2.1102
  • Referans8. Soykan, Y., 2020a. Tribonacci and Tribonacci-Lucas Matrix Sequences with Negative Subscripts, Communications in Mathematics and Applications, 11 (1): 141159, DOI: 10.26713/cma.v11i1.1103.
  • Referans9. Soykan Y., 2020b. On Generalized Narayana Numbers, Int. J. Adv. Appl. Math. and Mech. 7(3): 43-56, (ISSN: 2347-2529).
  • Referans10. Uslu, K., Uygun, S., 2013. On the (s,t) Jacobsthal and (s,t) Jacobsthal-Lucas Matrix Sequences, Ars Combin. 108: 13-22.
  • Referans11. Uygun, S¸., Uslu, K., 2015. (s,t)-Generalized Jacobsthal Matrix Sequences, Springer Proceedings in Mathematics&Statistics, Computational Analysis, Amat, Ankara, 325-336.
  • Referans12. Uygun, S¸., 2016. Some Sum Formulas of (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas Matrix Sequences, Applied Mathematics, 7: 61-69, http://dx.doi.org/10.4236/am.2016.71005.
  • Referans13. Uygun, S., 2019. The binomial transforms of the generalized (s,t)-Jacobsthal matrix sequence, Int. J. Adv. Appl. Math. and Mech. 6 (3): 14–20.
  • Referans14. Yazlik, Y., Taskara, N., Uslu K., Yilmaz, N., 2012. The generalized (s; t)-sequence and its matrix sequence, Am. Inst. Phys. (AIP) Conf. Proc. 1389: 381-384, https://doi.org/10.1063/1.3636742.
  • Referans15. Yilmaz, N., Taskara, N., 2013. Matrix Sequences in Terms of Padovan and Perrin Numbers, Journal of Applied Mathematics, Volume 2013 Article ID 941673, 7, http://dx.doi.org/10.1155/2013/941673.
  • Referans16. Yilmaz, N., Taskara, N., 2014. On the Negatively Subscripted Padovan and Perrin Matrix Sequences, Communications in Mathematics and Applications, 5 (2): 59-72.
  • Referans17. Wani, A.A., Badshah, V.H., and Rathore, G.B.S., 2018. Generalized Fibonacci and k-Pell Matrix Sequences, Punjab University J. of Mathematics, 50 (1): 68-79.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Melih Göcen 0000-0001-8669-6122

Yüksel Soykan 0000-0002-1895-211X

Sedat Çevikel Bu kişi benim 0000-0002-1716-6256

Yayımlanma Tarihi 9 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 11 Sayı: 1

Kaynak Göster

APA Göcen, M., Soykan, Y., & Çevikel, S. (2021). Narayana ve Narayana-Lucas Sayılarının Matris Dizileri. Karaelmas Fen Ve Mühendislik Dergisi, 11(1), 83-90.
AMA Göcen M, Soykan Y, Çevikel S. Narayana ve Narayana-Lucas Sayılarının Matris Dizileri. Karaelmas Fen ve Mühendislik Dergisi. Haziran 2021;11(1):83-90.
Chicago Göcen, Melih, Yüksel Soykan, ve Sedat Çevikel. “Narayana Ve Narayana-Lucas Sayılarının Matris Dizileri”. Karaelmas Fen Ve Mühendislik Dergisi 11, sy. 1 (Haziran 2021): 83-90.
EndNote Göcen M, Soykan Y, Çevikel S (01 Haziran 2021) Narayana ve Narayana-Lucas Sayılarının Matris Dizileri. Karaelmas Fen ve Mühendislik Dergisi 11 1 83–90.
IEEE M. Göcen, Y. Soykan, ve S. Çevikel, “Narayana ve Narayana-Lucas Sayılarının Matris Dizileri”, Karaelmas Fen ve Mühendislik Dergisi, c. 11, sy. 1, ss. 83–90, 2021.
ISNAD Göcen, Melih vd. “Narayana Ve Narayana-Lucas Sayılarının Matris Dizileri”. Karaelmas Fen ve Mühendislik Dergisi 11/1 (Haziran 2021), 83-90.
JAMA Göcen M, Soykan Y, Çevikel S. Narayana ve Narayana-Lucas Sayılarının Matris Dizileri. Karaelmas Fen ve Mühendislik Dergisi. 2021;11:83–90.
MLA Göcen, Melih vd. “Narayana Ve Narayana-Lucas Sayılarının Matris Dizileri”. Karaelmas Fen Ve Mühendislik Dergisi, c. 11, sy. 1, 2021, ss. 83-90.
Vancouver Göcen M, Soykan Y, Çevikel S. Narayana ve Narayana-Lucas Sayılarının Matris Dizileri. Karaelmas Fen ve Mühendislik Dergisi. 2021;11(1):83-90.