Araştırma Makalesi
BibTex RIS Kaynak Göster

Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method

Yıl 2024, , 38 - 43, 28.06.2024
https://doi.org/10.55385/kastamonujes.1477345

Öz

A novel approach to mass producing graphene without inadvertent damage was needed to meet the increasing demand for the material. Graphite electrochemical exfoliation (EE) is an intriguing method for the large-scale, quick, and easy manufacture of graphene. Using leftover whey as an electrolyte, the EE of commercial graphite was examined in this work. It was shown that a straightforward and affordable exfoliation technique may produce graphene that, in the absence of functionalization or surfactant, forms a stable dispersion in the waste solvent. Because wastewater is acidic, it has been shown that storing it at +4 degrees aids EE. X-ray diffraction (XRD) was used to satisfactorily validate the manufactured graphene's existence. The results point to a low-cost method of producing graphene and graphene oxide.

Kaynakça

  • Sun, H., Xu, G., Lian, W., Kastiukas, G., Zhang, J., Zhang, X., Liu, W., Xing, F., & Ren, J. (2022). Electrochemical synthesis and property characterisation of graphene oxide using water as electrolyte. Chemical Physics Letters, 786, 139206.
  • Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid & Interface Science, 20(5–6), 329–338.
  • Liu, F., Wang, C., Sui, X., Riaz, M. A., Xu, M., Wei, L., & Chen, Y. (2019). Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy, 1(2), 173–199.
  • Singh, R. (2021). Recent progress in the electrochemical exfoliation of colloidal graphene: A Review. Colloids - Types, Preparation and Applications.
  • Shabbir, M. K., Akhtar, J., Thebo, K. H., & Kazi, M. (2024). Synthesis of highly efficient ternary phase graphene/bi/SNO2 photocatalyst for degradation of organic dye pollutants. Optik, 304, 171734.
  • Htwe, Y. Z. N., Chow, W. S., Suda, Y., Thant, A. A., & Mariatti, M. (2019). Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Applied Surface Science, 469, 951–961.
  • Coroş, M., Pogăcean, F., Roşu, M.-C., Socaci, C., Borodi, G., Mageruşan, L., Biriş, A. R., & Pruneanu, S. (2016). Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 6(4), 2651–2661.
  • Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., & Yao, J. (2009). Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 47(14), 3242–3246.
  • Yang, S., Brüller, S., Wu, Z.-S., Liu, Z., Parvez, K., Dong, R., Richard, F., Samorì, P., Feng, X., & Müllen, K. (2015). Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. Journal of the American Chemical Society, 137(43), 13927–13932.
  • Yang, Y., Wang, Z., & Zheng, S. (2021). Secondary exfoliation of electrolytic graphene oxide by ultrasound assisted microwave technique. Nanomaterials, 12(1), 68.
  • Coroş, M., Pogăcean, F., Măgeruşan, L., Roşu, M.-C., Porav, A. S., Socaci, C., Bende, A., Stefan-van Staden, R.-I., & Pruneanu, S. (2018). Graphene-porphyrin composite synthesis through graphite exfoliation: The electrochemical sensing of Catechol. Sensors and Actuators B: Chemical, 256, 665–673.
  • Hamra, A. A. B., Lim, H. N., Chee, W. K., & Huang, N. M. (2016). Electro-exfoliating graphene from graphite for direct fabrication of Supercapacitor. Applied Surface Science, 360, 213–223.
  • Marković, Z. M., Budimir, M. D., Kepić, D. P., Holclajtner-Antunović, I. D., Marinović-Cincović, M. T., Dramićanin, M. D., Spasojević, V. D., Peruško, D. B., Špitalský, Z., Mičušik, M., Pavlović, V. B., & Todorović-Marković, B. M. (2016). Semi-transparent, conductive thin films of electrochemical exfoliated graphene. RSC Advances, 6(45), 39275–39283.
  • Fang, S., Lin, Y., & Hu, Y. H. (2019). Recent advances in green, safe, and fast production of graphene oxide via electrochemical approaches. ACS Sustainable Chemistry & Engineering, 7(15), 12671–12681.
  • Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A. N., & Li, L.-J. (2011). High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 5(3), 2332–2339.
Yıl 2024, , 38 - 43, 28.06.2024
https://doi.org/10.55385/kastamonujes.1477345

Öz

Kaynakça

  • Sun, H., Xu, G., Lian, W., Kastiukas, G., Zhang, J., Zhang, X., Liu, W., Xing, F., & Ren, J. (2022). Electrochemical synthesis and property characterisation of graphene oxide using water as electrolyte. Chemical Physics Letters, 786, 139206.
  • Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid & Interface Science, 20(5–6), 329–338.
  • Liu, F., Wang, C., Sui, X., Riaz, M. A., Xu, M., Wei, L., & Chen, Y. (2019). Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy, 1(2), 173–199.
  • Singh, R. (2021). Recent progress in the electrochemical exfoliation of colloidal graphene: A Review. Colloids - Types, Preparation and Applications.
  • Shabbir, M. K., Akhtar, J., Thebo, K. H., & Kazi, M. (2024). Synthesis of highly efficient ternary phase graphene/bi/SNO2 photocatalyst for degradation of organic dye pollutants. Optik, 304, 171734.
  • Htwe, Y. Z. N., Chow, W. S., Suda, Y., Thant, A. A., & Mariatti, M. (2019). Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process. Applied Surface Science, 469, 951–961.
  • Coroş, M., Pogăcean, F., Roşu, M.-C., Socaci, C., Borodi, G., Mageruşan, L., Biriş, A. R., & Pruneanu, S. (2016). Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 6(4), 2651–2661.
  • Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., & Yao, J. (2009). Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 47(14), 3242–3246.
  • Yang, S., Brüller, S., Wu, Z.-S., Liu, Z., Parvez, K., Dong, R., Richard, F., Samorì, P., Feng, X., & Müllen, K. (2015). Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. Journal of the American Chemical Society, 137(43), 13927–13932.
  • Yang, Y., Wang, Z., & Zheng, S. (2021). Secondary exfoliation of electrolytic graphene oxide by ultrasound assisted microwave technique. Nanomaterials, 12(1), 68.
  • Coroş, M., Pogăcean, F., Măgeruşan, L., Roşu, M.-C., Porav, A. S., Socaci, C., Bende, A., Stefan-van Staden, R.-I., & Pruneanu, S. (2018). Graphene-porphyrin composite synthesis through graphite exfoliation: The electrochemical sensing of Catechol. Sensors and Actuators B: Chemical, 256, 665–673.
  • Hamra, A. A. B., Lim, H. N., Chee, W. K., & Huang, N. M. (2016). Electro-exfoliating graphene from graphite for direct fabrication of Supercapacitor. Applied Surface Science, 360, 213–223.
  • Marković, Z. M., Budimir, M. D., Kepić, D. P., Holclajtner-Antunović, I. D., Marinović-Cincović, M. T., Dramićanin, M. D., Spasojević, V. D., Peruško, D. B., Špitalský, Z., Mičušik, M., Pavlović, V. B., & Todorović-Marković, B. M. (2016). Semi-transparent, conductive thin films of electrochemical exfoliated graphene. RSC Advances, 6(45), 39275–39283.
  • Fang, S., Lin, Y., & Hu, Y. H. (2019). Recent advances in green, safe, and fast production of graphene oxide via electrochemical approaches. ACS Sustainable Chemistry & Engineering, 7(15), 12671–12681.
  • Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A. N., & Li, L.-J. (2011). High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 5(3), 2332–2339.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Gülbahar Bilgiç 0000-0002-9503-5884

Yayımlanma Tarihi 28 Haziran 2024
Gönderilme Tarihi 2 Mayıs 2024
Kabul Tarihi 14 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bilgiç, G. (2024). Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method. Kastamonu University Journal of Engineering and Sciences, 10(1), 38-43. https://doi.org/10.55385/kastamonujes.1477345
AMA Bilgiç G. Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method. KUJES. Haziran 2024;10(1):38-43. doi:10.55385/kastamonujes.1477345
Chicago Bilgiç, Gülbahar. “Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method”. Kastamonu University Journal of Engineering and Sciences 10, sy. 1 (Haziran 2024): 38-43. https://doi.org/10.55385/kastamonujes.1477345.
EndNote Bilgiç G (01 Haziran 2024) Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method. Kastamonu University Journal of Engineering and Sciences 10 1 38–43.
IEEE G. Bilgiç, “Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method”, KUJES, c. 10, sy. 1, ss. 38–43, 2024, doi: 10.55385/kastamonujes.1477345.
ISNAD Bilgiç, Gülbahar. “Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method”. Kastamonu University Journal of Engineering and Sciences 10/1 (Haziran 2024), 38-43. https://doi.org/10.55385/kastamonujes.1477345.
JAMA Bilgiç G. Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method. KUJES. 2024;10:38–43.
MLA Bilgiç, Gülbahar. “Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method”. Kastamonu University Journal of Engineering and Sciences, c. 10, sy. 1, 2024, ss. 38-43, doi:10.55385/kastamonujes.1477345.
Vancouver Bilgiç G. Reduced Graphene Synthesis via Eco-Friendly Electrochemical Exfoliation Method. KUJES. 2024;10(1):38-43.