Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Hızlı 3D Yazıcı Parametrelerinde Farklı Filament Türlerinin Karşılaştırmalı Analizi: Teknik Filamentlerin Mekanik, Termal ve Baskı Performansı Üzerindeki Etkileri

Yıl 2025, Cilt: 11 Sayı: 1, 1 - 11, 25.06.2025
https://doi.org/10.55385/kastamonujes.1603181

Öz

Bu çalışma, yüksek hızlı bir FDM 3D yazıcıda (Creality K1 Max) hem standart hem de teknik filament tiplerinin baskı performansının sistematik karşılaştırmalı değerlendirmesini sunmaktadır. Veri sayfası tabanlı karşılaştırmaların aksine, bu araştırma, PLA, ABS, PETG, TPU, ASA, PC, karbon takviyeli PLA, silk PLA ve hyper PLA dahil olmak üzere yaygın olarak bulunan sekiz filament tipinde nozul sıcaklığı, yatak sıcaklığı, baskı hızı, hacimsel akış hızı ve soğutma ayarlarının gerçek dünya etkilerini deneysel olarak araştırmaktadır. Standart test geometrileri ve tutarlı çevresel kontroller kullanılarak, çalışma boyutsal doğruluğu, yüzey kalitesini ve eğilme eğilimlerini değerlendirmektedir. Sonuçlar, Hyper PLA'nın minimum yüzey kusurlarıyla 300 mm/s'ye kadar baskı hızlarına olanak tanırken, ABS ve PC gibi teknik filamentlerin eğilme ve delaminasyonu önlemek için sıkı sıcaklık ve soğutma düzenlemesi gerektirdiğini göstermektedir. Temel parametre etkileşimlerini görselleştirmek için bir korelasyon ısı haritası ve optimizasyon matrisi oluşturulmuştur. Bu çalışma, filament-spesifik davranışa dayalı baskı parametrelerinin ayarlanması için konsolide edilmiş, veri odaklı bir kılavuz sunarak alana katkıda bulunmakta; katalog verilerinin ötesine geçerek yüksek hızlı 3B baskı uygulamalarında bilinçli malzeme seçimi ve süreç kontrolü sağlamaktadır.

Kaynakça

  • Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639-649.
  • Khan, S., Joshi, K., & Deshmukh, S. (2022). A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Materials Today: Proceedings, 50, 2119-2127.
  • Benfriha, K., Ahmadifar, M., Shirinbayan, M., & Tcharkhtchi, A. (2021). Effect of process parameters on thermal and mechanical properties of polymer‐based composites using fused filament fabrication. Polymer Composites, 42(11), 6025-6037.
  • Andronov, V., Beránek, L., Krůta, V., Hlavůňková, L., & Jeníková, Z. (2023). Overview and comparison of PLA filaments commercially available in europe for FFF technology. Polymers, 15(14), 3065.
  • Bakhtiari, H., Aamir, M., & Tolouei-Rad, M. (2023). Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review. Applied Sciences, 13(2), 904.
  • Hsueh, M. H., Lai, C. J., Wang, S. H., Zeng, Y. S., Hsieh, C. H., Pan, C. Y., & Huang, W. C. (2021). Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling. Polymers, 13(11), 1758.
  • Doshi, M., Mahale, A., Singh, S. K., & Deshmukh, S. (2022). Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects. Materials Today: Proceedings, 50, 2269-2275.
  • Algarni, M., & Ghazali, S. (2021). Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters. Crystals, 11(8), 995.
  • Ibrahim, I., Ashour, A. G., Zeiada, W., Salem, N., & Abdallah, M. (2024). A systematic review on the technical performance and sustainability of 3d printing filaments using recycled plastic. Sustainability, 16(18), 8247.
  • Lei, M., Wei, Q., Li, M., Zhang, J., Yang, R., & Wang, Y. (2022). Numerical simulation and experimental study the effects of process parameters on filament morphology and mechanical properties of FDM 3D printed PLA/GNPs nanocomposite. Polymers, 14(15), 3081.
  • Khan, I., Tariq, M., Abas, M., Shakeel, M., Hira, F., Al Rashid, A., & Koç, M. (2023). Parametric investigation and optimisation of mechanical properties of thick tri-material based composite of PLA-PETG-ABS 3D-printed using fused filament fabrication. Composites Part C: Open Access, 12, 100392.
  • Valvez, S., Silva, A. P., & Reis, P. N. (2022). Optimization of printing parameters to maximize the mechanical properties of 3D-printed PETG-based parts. Polymers, 14(13), 2564.
  • Rodríguez-Reyna, S. L., Mata, C., Díaz-Aguilera, J. H., Acevedo-Parra, H. R., & Tapia, F. (2022). Mechanical properties optimization for PLA, ABS and Nylon+ CF manufactured by 3D FDM printing. Materials Today Communications, 33, 104774.
  • Abdulridha, H. H., & Abbas, T. F. (2023). Analysis and investigation the effect of the printing parameters on the mechanical and physical properties of PLA parts fabricated via FDM printing. Advances in Science and Technology. Research Journal, 17(6).
  • Frunzaverde, D., Cojocaru, V., Ciubotariu, C. R., Miclosina, C. O., Ardeljan, D. D., Ignat, E. F., & Marginean, G. (2022). The influence of the printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-printed PLA specimens. Polymers, 14(10), 1978.
  • Mecheter, A., & Tarlochan, F. (2023). Fused filament fabrication three-dimensional printing: assessing the influence of geometric complexity and process parameters on energy and the environment. Sustainability, 15(16), 12319.
  • Naveed, N., & Anwar, M. N. (2024). Optimising 3D printing parameters through experimental techniques and ANOVA‐Based statistical analysis. SPE Polymers, 5(2), 228-240.
  • Dimitrellou, S., Iakovidis, I., & Psarianos, D. R. (2024). Mechanical characterization of polylactic acid, polycarbonate, and carbon fiber-reinforced polyamide specimens fabricated by fused deposition modeling. Journal of Materials Engineering and Performance, 33(7), 3613-3626.
  • Lorkowski, L., Wybrzak, K., Brancewicz-Steinmetz, E., Świniarski, J., & Sawicki, J. (2025). Influence of print speed on the mechanical performance of 3D-printed bio-polymer polylactic acid. Materials, 18(8), 1765.
  • Dimitrellou, S., Strantzali, E., & Iakovidis, I. (2025). A decision-making strategy for selection of FDM-based additively manufactured thermoplastics for industrial applications based on material attributes. Sustainable Futures, 100640.
  • Bute, I., Tarasovs, S., Vidinejevs, S., Vevere, L., Sevcenko, J., & Aniskevich, A. (2023). Thermal properties of 3D printed products from the most common polymers. The International Journal of Advanced Manufacturing Technology, 124(7), 2739-2753.
  • Kantaros, A., Katsantoni, M., Ganetsos, T., & Petrescu, N. (2025). The evolution of thermoplastic raw materials in high-speed FFF/FDM 3D printing era: challenges and opportunities. Materials, 18(6), 1220.
  • Ekrem, M., & Yılmaz, M. (2025). Mechanical Properties of PLA, PETG, and ABS Samples Printed on a High-Speed 3D Printer. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 7(1), 161-174.
  • ASTM D638-14, (2015). Standard test method for tensile properties of plastics; ASTM International: West Conshohocken, PA.

Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing

Yıl 2025, Cilt: 11 Sayı: 1, 1 - 11, 25.06.2025
https://doi.org/10.55385/kastamonujes.1603181

Öz

This study presents a systematic comparative evaluation of the printing performance of both standard and technical filament types on a high-speed FDM 3D printer (Creality K1 Max). Unlike datasheet-based comparisons, this research experimentally investigates the real-world effects of nozzle temperature, bed temperature, print speed, volumetric flow rate, and cooling settings across nine widely available filament types, including PLA, ABS, PETG, TPU, ASA, PC, carbon-reinforced PLA, silk PLA and hyper PLA. Using standardized test geometries and consistent environmental controls, the study assesses dimensional accuracy, surface quality, and warping tendencies. The results demonstrate that while Hyper PLA enables printing speeds up to 300 mm/s with minimal surface defects, technical filaments like ABS and PC require strict temperature and cooling regulation to avoid warping and delamination. A correlation heatmap and optimization matrix were constructed to visualize key parameter interactions. This work contributes to the field by offering a consolidated, data-driven guide for tuning print parameters based on filament-specific behavior—extending beyond catalog data and enabling informed material selection and process control in high-speed 3D printing applications.

Etik Beyan

Etik kurul iznine gerek bulunmamaktadır.

Teşekkür

We would like to express our gratitude to Kastamonu University Scientific Research Projects Coordination Unit (KÜBAP) for their support under project number KÜBAP-01/2024-15. Their valuable contributions have significantly facilitated the progress and success of this study.

Kaynakça

  • Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639-649.
  • Khan, S., Joshi, K., & Deshmukh, S. (2022). A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Materials Today: Proceedings, 50, 2119-2127.
  • Benfriha, K., Ahmadifar, M., Shirinbayan, M., & Tcharkhtchi, A. (2021). Effect of process parameters on thermal and mechanical properties of polymer‐based composites using fused filament fabrication. Polymer Composites, 42(11), 6025-6037.
  • Andronov, V., Beránek, L., Krůta, V., Hlavůňková, L., & Jeníková, Z. (2023). Overview and comparison of PLA filaments commercially available in europe for FFF technology. Polymers, 15(14), 3065.
  • Bakhtiari, H., Aamir, M., & Tolouei-Rad, M. (2023). Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review. Applied Sciences, 13(2), 904.
  • Hsueh, M. H., Lai, C. J., Wang, S. H., Zeng, Y. S., Hsieh, C. H., Pan, C. Y., & Huang, W. C. (2021). Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling. Polymers, 13(11), 1758.
  • Doshi, M., Mahale, A., Singh, S. K., & Deshmukh, S. (2022). Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects. Materials Today: Proceedings, 50, 2269-2275.
  • Algarni, M., & Ghazali, S. (2021). Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters. Crystals, 11(8), 995.
  • Ibrahim, I., Ashour, A. G., Zeiada, W., Salem, N., & Abdallah, M. (2024). A systematic review on the technical performance and sustainability of 3d printing filaments using recycled plastic. Sustainability, 16(18), 8247.
  • Lei, M., Wei, Q., Li, M., Zhang, J., Yang, R., & Wang, Y. (2022). Numerical simulation and experimental study the effects of process parameters on filament morphology and mechanical properties of FDM 3D printed PLA/GNPs nanocomposite. Polymers, 14(15), 3081.
  • Khan, I., Tariq, M., Abas, M., Shakeel, M., Hira, F., Al Rashid, A., & Koç, M. (2023). Parametric investigation and optimisation of mechanical properties of thick tri-material based composite of PLA-PETG-ABS 3D-printed using fused filament fabrication. Composites Part C: Open Access, 12, 100392.
  • Valvez, S., Silva, A. P., & Reis, P. N. (2022). Optimization of printing parameters to maximize the mechanical properties of 3D-printed PETG-based parts. Polymers, 14(13), 2564.
  • Rodríguez-Reyna, S. L., Mata, C., Díaz-Aguilera, J. H., Acevedo-Parra, H. R., & Tapia, F. (2022). Mechanical properties optimization for PLA, ABS and Nylon+ CF manufactured by 3D FDM printing. Materials Today Communications, 33, 104774.
  • Abdulridha, H. H., & Abbas, T. F. (2023). Analysis and investigation the effect of the printing parameters on the mechanical and physical properties of PLA parts fabricated via FDM printing. Advances in Science and Technology. Research Journal, 17(6).
  • Frunzaverde, D., Cojocaru, V., Ciubotariu, C. R., Miclosina, C. O., Ardeljan, D. D., Ignat, E. F., & Marginean, G. (2022). The influence of the printing temperature and the filament color on the dimensional accuracy, tensile strength, and friction performance of FFF-printed PLA specimens. Polymers, 14(10), 1978.
  • Mecheter, A., & Tarlochan, F. (2023). Fused filament fabrication three-dimensional printing: assessing the influence of geometric complexity and process parameters on energy and the environment. Sustainability, 15(16), 12319.
  • Naveed, N., & Anwar, M. N. (2024). Optimising 3D printing parameters through experimental techniques and ANOVA‐Based statistical analysis. SPE Polymers, 5(2), 228-240.
  • Dimitrellou, S., Iakovidis, I., & Psarianos, D. R. (2024). Mechanical characterization of polylactic acid, polycarbonate, and carbon fiber-reinforced polyamide specimens fabricated by fused deposition modeling. Journal of Materials Engineering and Performance, 33(7), 3613-3626.
  • Lorkowski, L., Wybrzak, K., Brancewicz-Steinmetz, E., Świniarski, J., & Sawicki, J. (2025). Influence of print speed on the mechanical performance of 3D-printed bio-polymer polylactic acid. Materials, 18(8), 1765.
  • Dimitrellou, S., Strantzali, E., & Iakovidis, I. (2025). A decision-making strategy for selection of FDM-based additively manufactured thermoplastics for industrial applications based on material attributes. Sustainable Futures, 100640.
  • Bute, I., Tarasovs, S., Vidinejevs, S., Vevere, L., Sevcenko, J., & Aniskevich, A. (2023). Thermal properties of 3D printed products from the most common polymers. The International Journal of Advanced Manufacturing Technology, 124(7), 2739-2753.
  • Kantaros, A., Katsantoni, M., Ganetsos, T., & Petrescu, N. (2025). The evolution of thermoplastic raw materials in high-speed FFF/FDM 3D printing era: challenges and opportunities. Materials, 18(6), 1220.
  • Ekrem, M., & Yılmaz, M. (2025). Mechanical Properties of PLA, PETG, and ABS Samples Printed on a High-Speed 3D Printer. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 7(1), 161-174.
  • ASTM D638-14, (2015). Standard test method for tensile properties of plastics; ASTM International: West Conshohocken, PA.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Fuat Kartal 0000-0002-2567-9705

Arslan Kaptan 0000-0002-2431-9329

Gönderilme Tarihi 17 Aralık 2024
Kabul Tarihi 22 Haziran 2025
Yayımlanma Tarihi 25 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Kartal, F., & Kaptan, A. (2025). Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing. Kastamonu University Journal of Engineering and Sciences, 11(1), 1-11. https://doi.org/10.55385/kastamonujes.1603181
AMA Kartal F, Kaptan A. Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing. Kastamonu University Journal of Engineering and Sciences. Haziran 2025;11(1):1-11. doi:10.55385/kastamonujes.1603181
Chicago Kartal, Fuat, ve Arslan Kaptan. “Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing”. Kastamonu University Journal of Engineering and Sciences 11, sy. 1 (Haziran 2025): 1-11. https://doi.org/10.55385/kastamonujes.1603181.
EndNote Kartal F, Kaptan A (01 Haziran 2025) Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing. Kastamonu University Journal of Engineering and Sciences 11 1 1–11.
IEEE F. Kartal ve A. Kaptan, “Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing”, Kastamonu University Journal of Engineering and Sciences, c. 11, sy. 1, ss. 1–11, 2025, doi: 10.55385/kastamonujes.1603181.
ISNAD Kartal, Fuat - Kaptan, Arslan. “Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing”. Kastamonu University Journal of Engineering and Sciences 11/1 (Haziran2025), 1-11. https://doi.org/10.55385/kastamonujes.1603181.
JAMA Kartal F, Kaptan A. Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing. Kastamonu University Journal of Engineering and Sciences. 2025;11:1–11.
MLA Kartal, Fuat ve Arslan Kaptan. “Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing”. Kastamonu University Journal of Engineering and Sciences, c. 11, sy. 1, 2025, ss. 1-11, doi:10.55385/kastamonujes.1603181.
Vancouver Kartal F, Kaptan A. Beyond Datasheets: A Comparative Evaluation of Standard and Technical Filaments in High-Speed FDM 3D Printing. Kastamonu University Journal of Engineering and Sciences. 2025;11(1):1-11.