Limnospira platensis ve Cladophora glomerata Inokulasyonunun Mercimek Rizosferindeki Bazı Biyolojik Özelliklere Etkisi
Yıl 2025,
Cilt: 11 Sayı: 2, 104 - 113, 25.12.2025
Elif Doğan
,
Cenap Cevheri
,
Çiğdem Küçük
,
Göksal Sezen
Öz
Bu çalışmada Limnospira platensis ve Cladophora glomerata’nın mercimekte bitki büyümesi ve toprağın solunum ve glukosidaz enzim aktivitesi üzerindeki olumlu etkisi incelenmiştir. L. platensis ve C. glomerata’nın farklı dozlarının uygulanması, her iki türde de doza bağlı bir şekilde fide büyümesini ve toprağın bazı mikrobiyolojik özelliklerini büyük ölçüde teşvik etmiştir. Tesadüf parselleri faktöriyel deneme desenine göre planlanan çalışmada farklı dozlarda (kontrol (%0), %0.2, %0.4, %0.6, %0.8 ve %1) mikroalg olan L. platensis ve makro alg C. glomerata’nın ayrı ayrı ve karışımları fide kök bölgesine uygulanmıştır. Ekimden 12 hafta sonra hasat edilen fidelerde her iki alg uygulaması; fidelerin yeşil aksam ağırlıkları, bitki boyu, kök uzunluğu, klorofil içeriğini kontrole göre artırmıştır. Ayrıca L. platensis ve C. glomerata uygulanması, toprak sağlığının belirlenmesinde önemli olan toprak solunumu ve β-glukosidaz enzim aktivitesinde de olumlu bir etki göstermiştir. İncelenen özellikler üzerine L. platensis ve C. glomerata’nın ayrı ayrı uygulanmasına göre yüksek dozların birlikte uygulanması daha etkili bulunmuştur. Bulgularımız, topraklara uygulanan L. platensis ve C. glomerata’nın ayrı ayrı ve birlikte uygulanmasının hem bitki hem de toprak sağlığını artırdığını göstermekle birlikte, tarımda kullanılan kimyasal gübrelere karşı çevre kirliğinin önlenmesinde alternatif olabilir.
Kaynakça
-
Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C., & Rouphael, Y. (2018). Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Frontiers Plant Sciences, 9, 1782.
-
Gonçalves, J., Freitas, J., Fernandes, I., & Silva, P. (2023). Microalgae as Biofertilizers: A Sustainable way to improve soil fertility and plant growth. Sustainability, 15(16), 12413.
-
Povero, G., Mejia, J.F., di Tommaso, D., Piaggesi, A., & Warrior, P.A. (2016). Systematic approach to discover and characterize natural plant biostimulants. Frontiers Plant Sciences, 7, 435.
-
Prisa, D., & Spagnuolo, D. (2023). Plant Production with Microalgal Biostimulants. Horticulturae, 9, 829.
-
Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., & Kadmiri, I. (2020). Biostimulants derived from moroccan seaweeds: Seed germination metabolomics and growth promotion of tomato plant. Journal of Plant Growth Regulation, 40, 353–370.
-
Kumar, S., Diksha, S., Sindhu, S.S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094.
-
Barone, V., Baglieri, A., & Stevanato, P. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology, 30, 1061–1071.
-
Prisa, D., & Prisa, D. (2019). Possible use of Spirulina and klamath algae as biostimulants in Portulacagrandiflora (Moss Rose). World Journal of Advanced Research and Reviews, 3, 1–6.
-
Kopta, T., Pavlíkova, M., Sękara, A., Pokluda, R., & Marsalek, B. (2018). Effect of bacterial-algal biostimulant on the yield and internal quality of Lettuce (Lactuca sativa L.) produced for spring and summer crop. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46, 615–621.
-
Vigani, M., Parisi, C., Rodríguez-Cerezo, E., Barbosa, M.J., Sijtsma, L., & Enzing, C. (2015). Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends in Food Science & Technology, 42,81–92.
-
Coppens, J., Lindeboom, R., Muys, M., Coessens, W., Alloul, A., Meerbergen, K., Lievens, B., Clauwaert, P., Boon N., & Vlaeminck, S.E. (2016). Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresoure Technology, 211, 41–50.
-
Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061.
-
Faheed, F.A., & Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture & Social Sciences, 4, 165–169.
-
Colla, G., & Rouphael, Y. (2020). Microalgae: new source of plant biostimulants. Agronomy, 10,1240.
-
Arahou, F., Hassikou, R., & Arahou, M. (2021). Influence of culture conditions on Arthrospira platensis growth and valorization of biomass as input for sustainable agriculture. Aquaculture International, 29, 2009–2020.
-
Fais, G., Manca, A., Bolognesi, F., Borselli, M., Concas, A., & Giannaccare, G. (2022). Wide range applications of Spirulina: from earth to space missions. Marine Drugs, 20, 299.
-
Ertani, A., Nardi, S., & Francioso, O. (2019). Effects of two protein hydrolysates obtained from chickpea (Cicer arietinum l.) and Spirulina platensis on Zea mays (L.) plants. Frontiers Plant Sciences, 10, 954.
-
Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33, 133–166.
-
Borowitzka, M. A., Critchley, A. T., Kraan, S., Peters, A., Sjøtun, K., & Notoya, M. (2013). Developments in applied phycology. Algae for biofuels and energy, 5, 133-152. Borowitzka, M. A. Developments in Applied Phycology 8.
-
Korzeniowska, K., Łęska, B., & Wieczorek, P. P. (2020). Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Research, 48, 101912.
-
Ceylan, B., & Sezen, G. (2024). Determination of biological activity of some macro/micro algae. Kastamonu University Journal of Engineering and Sciences, 10(1), 1-6.
-
Çayci, M., Ceylan, B., & Sezen, G. (2024). Determination of Heavy Metal Contents in Macro/Micro Algae Samples by ICP-OES. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(3), 30-35.
-
Michalak, I., Annika, B., Sylwia, B., Sylwia, L., Jerzy, D., Michal, L., & Henry, B. (2020). Cladophora glomerata extract and static magnetic field influences the germination of seeds and multielemental composition of carrot. Ecological Chemistry and Engineering, 27, 629–641.
-
Dziergowska, K., Lewandowska, S., Mech, R., Pol, M., Detyna, J., & Michalak, I. (2021). Soybean Germination Response to Algae Extract and a Static Magnetic Field Treatment. Applied Sciences, 11(18), 8597.
-
Lewandowska, S., Michalak, I., Niemczyk, K., Detyna, J., Bujak, H., & Arik, P. (2019). Influence of the static magnetic field and algal extract on the germination of soybean seeds. Open Chemistry, 17, 516–525.
-
Michalak, I., Lewandowska, S., Niemczy, K., Detyna, J., Bujak, H., & Arik, P. (2019). Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Engineering in Life Sciences, 9, 986–999.
-
Soares, C., Svarc-Gajic, J., Oliva-Teles, M. T., Pinto, E., Nastic, N., & Delerue-Matos, C. (2020). Mineral composition of subcritical water extracts of Saccorhiza polyschides, a brown seaweed used as fertilizer in the North of Portugal. Journal of Marine Science and Engineering, 8(4), 244.
-
Lewandowska, S., Dziergowska, K., & Galek, R. (2023). Cladophora glomerata extracts produced by Ultrasound-Assisted Extraction support early growth and development of lupin (Lupinus angustifolius L.). Scientific Reports, 13, 17867.
-
Küçük, Ç., Uslu, P., & Sezen, G. (2024). C. glomerata ve Arbüsküler Mikorizal Fungus (AMF) Spor Aşılamasının Mısır Bitkisinin (Zea mays L.) Gelişim Parametreleri ve Bazı rizosfer toprak enzimlerine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 189-196.
-
Kumar, G., & Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23, 251–255.
-
Yıldız, M., & Özgen, M. (2004). The effect of media sucrose concentration on total phenolics content and adventitous shoot regeneration from sugarbeet (Beta vulgaris L.) leaf and petiole explants. Plant Cell, Tissue and Organ Culture, 77, 111-115.
-
Arnon, D.T. (1967). Copper Enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1- 15.
-
Eivazi, F. & Tabatabai, M.A. (1988) Glucosidases and Galactosidases in Soils. Soil Biology and Biochemistry, 20, 601-606.
-
Mukherjee, A., Gaurav, A.K., Patel, A.K., Singh, S., Chouhan, G.K., & Lepcha, A. (2021). Unlocking the potential plant growth-promoting properties of chickpea (Cicer arietinum l.) seed endophytes bio-inoculants for improving soil health and crop production. Land Degradation & Development, 32 (15), 4362–4374.
-
Anderson, J.P.E. (1982). Soil respiration. In: methods of soil analysis, part 2, chemical and microbiological properties (Ed. A.L. Page). ASA-SSSA, Madison, Winsconsin. pp. 831-871.
-
Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., & Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientific Horticture, 182, 124–133.
-
Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31, 1–17.
-
Lee, S.M., & Ryu, C.M. (2021). Algae as new kids in the beneficial plant microbiome. Frontier in Plant Science, 12, 599742.
-
Steveni, C.M., Norrington-Davies, J., & Hankins, S.D. (1992). Efect of seaweed concentrate on hydroponically grown spring barley. Journal of Applied Phycology, 4, 173–180.
-
Stirk, W.A., & Van Staden, J. (1997). Comparison of cytokinin and auxinlike activity in some commercially used seaweed extracts. Journal of Applied Phycology, 8,503–508.
-
Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., & Costa, G. (2010). A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Scientia Horticulturae, 125, 263–269.
-
Mukherjee, C., Chowdhury, R., Sutradhar, T., Begam, M., Ghosh, S.M., & Ray, K. (2016). Parboiled rice efuent: a wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Research, 19, 225–236.
-
Kholssi, R., Marks, E.A.N., Montero, O., Mate, A.P., Debdoubi, A., Rad, C. (2018). The growth of flamentous microalgae is increased on biochar solid supports. Biocatalysis and Agricultural Biotechnology, 13, 182–185. https://doi.org/10.1016/j.bcab.2017.12.011
-
Schreiber, C., Schiedung, H., & Harrison, L. (2018). Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. Journal of Applied Phycology, 30, 2827–2836.
-
Isinkaralar, K. (2022). Some atmospheric trace metals deposition in selected trees as a possible biomonitor. Romanian Biotechnological Letters, 27(1), 3227-3236.
-
Mahmoud, S.H., Salama, D.M., El-Tanahy, A.M.M., & Abd El-Samad, E.H. (2019). Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals Agricultural Sciences, 64, 167–175.
-
Van Oosten, M.J., Pepe, O., & De Pascale, S. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemistry Biologyical Technologies in Agriculture, 4, 5.
-
Renuka, N., Guldhe, A., Prasanna, R., Singh, P., Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36, 1255-1273.
-
De Caire, G.Z., De Cano, M.S., Palma, R.M., De Mule, C.Z. (2000). Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biology & Biochemistry, 32,1985-1987.
-
El-Aziz Kasim, W.A., Saad-Allah, K.M., & Hamouda, M. (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). International Journal of Agriculture & Biology, 18, 653–660.
-
Vives-Peris, V., de Ollas, C., Gomez-Cadenas, C., Pérez-Clemente, R.M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports, 39 (1), 3-17.
-
Rolfe, S.A., Griffiths, J. & Ton, J. (2019) Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health promoting soil microbiomes. Current opinion in microbiology, 49, 73–82.
-
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E.V.L. & SchulzeLefert, P. (2013) Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.
-
Manjunath, M., Kanchan, A., Ranjan, K., Venkatachalam, S., Prasanna, R., Ramakrishnan, B., & Singh, B. (2016). Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon, 2(2).
-
Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances, 34(7), 1225-1244.
-
Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399.
-
Marks, E.A.N., Minon, J., Pascual, A., Montero, O., Navas, L.M., & Rad, C. (2017). Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth. Science of the Total Environment, 606,610–617.
Effect of Limnospira platensis and Cladophora glomerata Inoculation on Some Biological Properties of Lentil Rhizosphere
Yıl 2025,
Cilt: 11 Sayı: 2, 104 - 113, 25.12.2025
Elif Doğan
,
Cenap Cevheri
,
Çiğdem Küçük
,
Göksal Sezen
Öz
This study investigated the positive effect of Limnospira platensis and Cladophora glomerata on plant growth in lentils and on soil respiration and glucosidase enzyme activity. The application of different doses of L. platensis and C. glomerata significantly promoted seedling growth and certain microbiological properties of the soil in both species in a dose-dependent manner. In the study, planned according to a factorial experimental design with randomised plots, L. platensis microalgae and C. glomerata macroalgae were applied separately and in mixtures at different doses (control (0%), 0.2%, 0.4%, 0.6%, 0.8% and 1%) to the seedling root zone. Twelve weeks after sowing, both algal applications increased the green shoot weight, plant height, root length, and chlorophyll content of the seedlings compared to the control. Furthermore, the application of L. platensis and C. glomerata had a positive effect on soil respiration and β-glucosidase enzyme activity, which are important indicators of soil health. Compared to the separate application of L. platensis and C. glomerata, the combined application of high doses was found to be more effective on the characteristics studied. Our findings show that the separate and combined application of L. platensis and C. glomerata to soils improves both plant and soil health and may be an alternative to chemical fertilisers used in agriculture in preventing environmental pollution.
Etik Beyan
Ethics committee approval is not required.
Destekleyen Kurum
Harran University HUBAK
Teşekkür
This study was financially supported by Harran University, Scientific Research Projects Unit (HÜBAP) with project number 21266.
Kaynakça
-
Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C., & Rouphael, Y. (2018). Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Frontiers Plant Sciences, 9, 1782.
-
Gonçalves, J., Freitas, J., Fernandes, I., & Silva, P. (2023). Microalgae as Biofertilizers: A Sustainable way to improve soil fertility and plant growth. Sustainability, 15(16), 12413.
-
Povero, G., Mejia, J.F., di Tommaso, D., Piaggesi, A., & Warrior, P.A. (2016). Systematic approach to discover and characterize natural plant biostimulants. Frontiers Plant Sciences, 7, 435.
-
Prisa, D., & Spagnuolo, D. (2023). Plant Production with Microalgal Biostimulants. Horticulturae, 9, 829.
-
Mzibra, A., Aasfar, A., Benhima, R., Khouloud, M., Boulif, R., & Kadmiri, I. (2020). Biostimulants derived from moroccan seaweeds: Seed germination metabolomics and growth promotion of tomato plant. Journal of Plant Growth Regulation, 40, 353–370.
-
Kumar, S., Diksha, S., Sindhu, S.S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094.
-
Barone, V., Baglieri, A., & Stevanato, P. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology, 30, 1061–1071.
-
Prisa, D., & Prisa, D. (2019). Possible use of Spirulina and klamath algae as biostimulants in Portulacagrandiflora (Moss Rose). World Journal of Advanced Research and Reviews, 3, 1–6.
-
Kopta, T., Pavlíkova, M., Sękara, A., Pokluda, R., & Marsalek, B. (2018). Effect of bacterial-algal biostimulant on the yield and internal quality of Lettuce (Lactuca sativa L.) produced for spring and summer crop. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46, 615–621.
-
Vigani, M., Parisi, C., Rodríguez-Cerezo, E., Barbosa, M.J., Sijtsma, L., & Enzing, C. (2015). Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends in Food Science & Technology, 42,81–92.
-
Coppens, J., Lindeboom, R., Muys, M., Coessens, W., Alloul, A., Meerbergen, K., Lievens, B., Clauwaert, P., Boon N., & Vlaeminck, S.E. (2016). Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine. Bioresoure Technology, 211, 41–50.
-
Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061.
-
Faheed, F.A., & Abd-El Fattah, Z. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture & Social Sciences, 4, 165–169.
-
Colla, G., & Rouphael, Y. (2020). Microalgae: new source of plant biostimulants. Agronomy, 10,1240.
-
Arahou, F., Hassikou, R., & Arahou, M. (2021). Influence of culture conditions on Arthrospira platensis growth and valorization of biomass as input for sustainable agriculture. Aquaculture International, 29, 2009–2020.
-
Fais, G., Manca, A., Bolognesi, F., Borselli, M., Concas, A., & Giannaccare, G. (2022). Wide range applications of Spirulina: from earth to space missions. Marine Drugs, 20, 299.
-
Ertani, A., Nardi, S., & Francioso, O. (2019). Effects of two protein hydrolysates obtained from chickpea (Cicer arietinum l.) and Spirulina platensis on Zea mays (L.) plants. Frontiers Plant Sciences, 10, 954.
-
Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33, 133–166.
-
Borowitzka, M. A., Critchley, A. T., Kraan, S., Peters, A., Sjøtun, K., & Notoya, M. (2013). Developments in applied phycology. Algae for biofuels and energy, 5, 133-152. Borowitzka, M. A. Developments in Applied Phycology 8.
-
Korzeniowska, K., Łęska, B., & Wieczorek, P. P. (2020). Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Research, 48, 101912.
-
Ceylan, B., & Sezen, G. (2024). Determination of biological activity of some macro/micro algae. Kastamonu University Journal of Engineering and Sciences, 10(1), 1-6.
-
Çayci, M., Ceylan, B., & Sezen, G. (2024). Determination of Heavy Metal Contents in Macro/Micro Algae Samples by ICP-OES. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 10(3), 30-35.
-
Michalak, I., Annika, B., Sylwia, B., Sylwia, L., Jerzy, D., Michal, L., & Henry, B. (2020). Cladophora glomerata extract and static magnetic field influences the germination of seeds and multielemental composition of carrot. Ecological Chemistry and Engineering, 27, 629–641.
-
Dziergowska, K., Lewandowska, S., Mech, R., Pol, M., Detyna, J., & Michalak, I. (2021). Soybean Germination Response to Algae Extract and a Static Magnetic Field Treatment. Applied Sciences, 11(18), 8597.
-
Lewandowska, S., Michalak, I., Niemczyk, K., Detyna, J., Bujak, H., & Arik, P. (2019). Influence of the static magnetic field and algal extract on the germination of soybean seeds. Open Chemistry, 17, 516–525.
-
Michalak, I., Lewandowska, S., Niemczy, K., Detyna, J., Bujak, H., & Arik, P. (2019). Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Engineering in Life Sciences, 9, 986–999.
-
Soares, C., Svarc-Gajic, J., Oliva-Teles, M. T., Pinto, E., Nastic, N., & Delerue-Matos, C. (2020). Mineral composition of subcritical water extracts of Saccorhiza polyschides, a brown seaweed used as fertilizer in the North of Portugal. Journal of Marine Science and Engineering, 8(4), 244.
-
Lewandowska, S., Dziergowska, K., & Galek, R. (2023). Cladophora glomerata extracts produced by Ultrasound-Assisted Extraction support early growth and development of lupin (Lupinus angustifolius L.). Scientific Reports, 13, 17867.
-
Küçük, Ç., Uslu, P., & Sezen, G. (2024). C. glomerata ve Arbüsküler Mikorizal Fungus (AMF) Spor Aşılamasının Mısır Bitkisinin (Zea mays L.) Gelişim Parametreleri ve Bazı rizosfer toprak enzimlerine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 189-196.
-
Kumar, G., & Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23, 251–255.
-
Yıldız, M., & Özgen, M. (2004). The effect of media sucrose concentration on total phenolics content and adventitous shoot regeneration from sugarbeet (Beta vulgaris L.) leaf and petiole explants. Plant Cell, Tissue and Organ Culture, 77, 111-115.
-
Arnon, D.T. (1967). Copper Enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1- 15.
-
Eivazi, F. & Tabatabai, M.A. (1988) Glucosidases and Galactosidases in Soils. Soil Biology and Biochemistry, 20, 601-606.
-
Mukherjee, A., Gaurav, A.K., Patel, A.K., Singh, S., Chouhan, G.K., & Lepcha, A. (2021). Unlocking the potential plant growth-promoting properties of chickpea (Cicer arietinum l.) seed endophytes bio-inoculants for improving soil health and crop production. Land Degradation & Development, 32 (15), 4362–4374.
-
Anderson, J.P.E. (1982). Soil respiration. In: methods of soil analysis, part 2, chemical and microbiological properties (Ed. A.L. Page). ASA-SSSA, Madison, Winsconsin. pp. 831-871.
-
Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., & Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientific Horticture, 182, 124–133.
-
Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31, 1–17.
-
Lee, S.M., & Ryu, C.M. (2021). Algae as new kids in the beneficial plant microbiome. Frontier in Plant Science, 12, 599742.
-
Steveni, C.M., Norrington-Davies, J., & Hankins, S.D. (1992). Efect of seaweed concentrate on hydroponically grown spring barley. Journal of Applied Phycology, 4, 173–180.
-
Stirk, W.A., & Van Staden, J. (1997). Comparison of cytokinin and auxinlike activity in some commercially used seaweed extracts. Journal of Applied Phycology, 8,503–508.
-
Spinelli, F., Fiori, G., Noferini, M., Sprocatti, M., & Costa, G. (2010). A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Scientia Horticulturae, 125, 263–269.
-
Mukherjee, C., Chowdhury, R., Sutradhar, T., Begam, M., Ghosh, S.M., & Ray, K. (2016). Parboiled rice efuent: a wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Research, 19, 225–236.
-
Kholssi, R., Marks, E.A.N., Montero, O., Mate, A.P., Debdoubi, A., Rad, C. (2018). The growth of flamentous microalgae is increased on biochar solid supports. Biocatalysis and Agricultural Biotechnology, 13, 182–185. https://doi.org/10.1016/j.bcab.2017.12.011
-
Schreiber, C., Schiedung, H., & Harrison, L. (2018). Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. Journal of Applied Phycology, 30, 2827–2836.
-
Isinkaralar, K. (2022). Some atmospheric trace metals deposition in selected trees as a possible biomonitor. Romanian Biotechnological Letters, 27(1), 3227-3236.
-
Mahmoud, S.H., Salama, D.M., El-Tanahy, A.M.M., & Abd El-Samad, E.H. (2019). Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals Agricultural Sciences, 64, 167–175.
-
Van Oosten, M.J., Pepe, O., & De Pascale, S. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemistry Biologyical Technologies in Agriculture, 4, 5.
-
Renuka, N., Guldhe, A., Prasanna, R., Singh, P., Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36, 1255-1273.
-
De Caire, G.Z., De Cano, M.S., Palma, R.M., De Mule, C.Z. (2000). Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharide. Soil Biology & Biochemistry, 32,1985-1987.
-
El-Aziz Kasim, W.A., Saad-Allah, K.M., & Hamouda, M. (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). International Journal of Agriculture & Biology, 18, 653–660.
-
Vives-Peris, V., de Ollas, C., Gomez-Cadenas, C., Pérez-Clemente, R.M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports, 39 (1), 3-17.
-
Rolfe, S.A., Griffiths, J. & Ton, J. (2019) Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health promoting soil microbiomes. Current opinion in microbiology, 49, 73–82.
-
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E.V.L. & SchulzeLefert, P. (2013) Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.
-
Manjunath, M., Kanchan, A., Ranjan, K., Venkatachalam, S., Prasanna, R., Ramakrishnan, B., & Singh, B. (2016). Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon, 2(2).
-
Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology advances, 34(7), 1225-1244.
-
Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399.
-
Marks, E.A.N., Minon, J., Pascual, A., Montero, O., Navas, L.M., & Rad, C. (2017). Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth. Science of the Total Environment, 606,610–617.