Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 8 Sayı: 2, 98 - 106, 26.12.2022
https://doi.org/10.55385/kastamonujes.1151603

Öz

Destekleyen Kurum

Çalışmada herhangi bir proje ve kurumdan destek alınmamıştır

Kaynakça

  • Isinkaralar, K. (2022). Some atmospheric trace metals deposition in selected trees as a possible biomonitor. Romanian Biotechnological, 27(1), 3227-3236.
  • Bilgici Cengiz, G., & Çağlar, İ. (2019). Determination of natural radioactivity concentrations of some fertilizers used in Eastern Anatolia of Turkey. Caucasian Journal of Science, 6(2), 147-155.
  • Manigandan, P.K., & Chandar Shekar, B. (2014). Uptake of some radionuclides by woody plants growing in the rainforest of Western Ghats in India. Journal of Environment Rdioactivity, 130,63-67.
  • Manigandan, P.K., & Chandar Shekar, B. (2015). Leaves of Woody Plants As Bio-İndicators Of Radionuclides In Forest Ecosystems. Journal of Radioanalytical and Nuclear Chemistry, 303, 911-917.
  • Kılıç, Ö., Belivermiş, M., Topcuoğlu, S., Çotuk, Y., Coşkun, M., Çayır, A., & Küçer, R. (2008). Radioactivity concentrations and dose assessment in surface soil samples from East and South of Marmara region Turkey. Radiation Protection Dosimetry, 128 (3), 324-330.
  • Kumar, A., Sınghal, R.K., Preetha, J., Rupali, K., Naravanan, U., Suresh, S., Mıshra, M.K., & Ranade, A.K. (2008). Impact of tropical ecosystem on the migrational behaviour of K-40, Cs-137, Th-232 U-238 in perennial plants. Water, Air, and Soil Pollution 192(1-4), 293-302.
  • Saenboonruang, K., Phonchanthuek, E., & Prasandee, K. (2018). Soil-to-Plant Transfer Factors of Natural Radionuclides (226Ra and 40K) in Selected Thai Medicinal Plants. Journal of Environmental Radioactivity, 184-185, 1-5.
  • Bréda, N. (2008). Leaf Area Index. Encycl. Ecol. 2148-2154.
  • Doi, T., Masumoto, K., Toyoda, A., Tanaka, A., Shibata, Y., Hirose K. (2013). Anthropogenic radionuclides in the atmosphere observed at Tsukuba: Characteristics of the radionuclides derived from Fukushima. Journal of Environmental Raioactivitiy, 122,55-62.
  • Chandrashekara, K., & Somashekarappa, H. (2015). Soil to plant transfer factors of radionuclides in Ficus racemosa (L.): A medicinal plant. International Research Journal of Biological Sciences, 4(9), 43-47.
  • Özden, S., & Aközcan, S. (2020). Determınatıon of radıonuclıde transfer in sunflower on agrıcultural lands in Kırklareli. Kırklareli University Journal of Engineering and Science, 6(2),153-16.
  • Bramki, A., Ramdhane, M., Benrachi, F. (2018). Natural radioelement concentrations in fertilizers and the soil of the Mila Region of Algeria. Journal of Radiation Research and Applied Sciences, (11),49-55.
  • Chen, S., Wang, Q., Lu, H, Li, J., Yang, D., Liu, J., Yan, C. (2019). Phenolic Metabolism and Related Heavy Metal Tolerance Mechanism in Kandelia obovata under Cd and Zn Stress. Ecotoxicology And Environmental Safety, 169,134-143.
  • Kandziora-Ciupa, M., Ciepał, R., Nadgo´rska-Socha, A., & Barczyk, G. (2016). Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. Needles in Polluted and non-Polluted Sites. Ecotoxicology, 25,70-981.
  • Turfan, N., Kunaz, A., & Sarıyıldız, T. (2021). Effect of air pollution on element profile and radioactive compounds in six tree species. Tree and Forest 2(2),82-92.
  • Saleh, E.A.A., & Işınkaralar, Ö. (2022). Analysis of trace elements accumulation in some landscape plants as an indicator of pollution in an urban environment: Case of Ankara. Kastamonu University Journal of Engineering and Sciences, 8(1)1-5.
  • Karakeçi, H., Kaya, Ö.F., Çelik, T.H. (2021). An Investigation on heavy metal pb, zn, cu, ni and cd accumulation in leaves of Robinia Pseudoacacia L. “Umbraculifera” arising from motor vehicles. Kastamonu University Journal of Engineering and Sciences 7(2)114-126.
  • Kılıç, Ö. (2012). Bıomonıtorıng of 137Cs, 40K, 232Th, and 238U usıng oak bark in Belgrade Forest, Istanbul, Turkey. Nuclear Technolog and Radiation Orotection, 27(2),137-143.
  • Kurnaz A., &Turfan N (2017). The effect of different storage conditions on the radiometric and element content of the Taşköprü garlic (Allium sativum). Turkish Journal of Agricultue-Food Science and Technology, 5(4), 373-379.
  • Bilgici Cengiz, G., & Çağlar, İ. (2022). Transfer Factors of Natural Radionuclides from Soil to Medicinal Plants Used by Local People in Eastern Anatolia, Turkey. International Journal of Environment and Geoinformatics, 9(2), 039-044.
  • Pekşen, A., Kurnaz, A., Turfan, N., & Kibar, B. (2021). Determination of radioactivity levels in different mushroom species from Turkey. Yuzuncu Yil University Journal of Agricultural Science, 31(1), 30-41.
  • Kaya, S., Karabıdak, S.M., & Çevik, U. (2015). Determination of natural (226ra, 232ta and 40k) and artificial (137cs) radioactivity concentrations in soil and moss samples collected from around Gümüşhane. Gümüşhane Unversity Journal of Science and Technology, 5 (1), 24-33.
  • Kurnaz, A., Turhan, Ş., & Alzaridi, F.M.N.S. (2021). Radiological and physicochemical properties of drinking waters consumed in the Western Black Sea Region of Turkey. Journal of Radioanalytical Nuclear Chemistry, 328, 805-814.
  • Gülçur, F. (1974). Physical and chemical analysis methods of soil. Istanbul University Faculty of Forestry Publications No: 201, Istanbul.
  • Adesiji, N.E., & Ademola, J.A. (2019). Soil-to-maize Transfer Factor of Natural Radionuclides in a Tropical Ecosystem of Nigeria. Nigeria Journal of Pure & Applied Physics, 9(1),6-10.
  • Lamarque, S., Lucot, E., & Badot, P.M. (2005). Soil-plant transfer of radiocaesium in weakly contaminated forest ecosystems. Radioprotection, 1(40),407-412.
  • Absar, N., Abedin, J., Rahman, M.M., Miah, M.M.H., Siddique, N., Kamal, M., Chowdhury, M.I., Sulieman, A., Faruque, M.R.I., Khandaker, M.U., Bradley, D.A., & Alsubaie, A. (2021). Radionuclides transfer from soil to tea leaves and estimation of committed effective dose to the Bangladesh Populace. Life, 11, 282.
  • Tshivhase, V.M., Njinga, R.L., Mathuthu, M., & Dlamini, T.C. (2015). Transfer rates of 238U and 232Th for E. globulus, A. mearnsii, H. filipendula and hazardous effects of the usage of medicinal plants from around gold mine dump environs. International Journal of Environmental Research and Public Health 12(12), 15782-15793.
  • Marschner, H., & Marschner, P. (2012). Marschner’s mineral nutrition of higher plants, 3rd ed. (San Diego, Elsevier Academic Press), 1-651.
  • Mordoğan, N., Ceylan, Ş., Delibacak, S., Çakıcı, H., Günen, E., Pekcan, T., & Çolak, B. (2012). Effect of organic fertilization to nutrients content in soils cultivated olives. Journal of Adnan Menderes University Agricultural Faculty, 10(3),7-13.
  • Chakraborty, S.R., Azim, R., Rahman, A.R., & Sarker, R. (2013). Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the Chittagong City of Bangladesh. Journal of Physical Science, 24 (1), 95.
  • Bilgici Cengiz, G., & Çaglar, İ. (2021). Determınatıon of the natural radıoactıvıty dıstrıbutıon and consumptıon effectıve dose rate ff cereal crops in Ardahan Provınce, Turkey. Journal of Scientific Reports-A, 47, 174-183.
  • Shayeb MA, Alharbi T, Baloch MA, Rahman Alsamhan OA (2017). Transfer Factors for Natural Radioactivity into Date Palm Pits. Journal of Environmenta Radioactivity, 167,75-79.
  • Hadrovıć, S.H., Čelıkovıć I.T., Krneta Nıkolıć, J.D., Rajačıć M.M., & Todorovıć, D.J. (2021). Radıonuclıdes’ content in forest ecosystem located in southwestern part of Serbıa. Nuclear Technology and Radiation Protection, 36(2),192-196.
  • Kant, S., Kant, P., & Kafkafi, U. (2005). Potassium uptake by higher plants: from field application to membrane transport. Acta Agronomica Hungarica, 53, 443-459.
  • Wilkins, K.A., Matthus, E., Swarbreck, S. M., & Davies, J.M. (2016). Calcium Mediated Abiotic Stress Signaling in Roots. Frontie in Olant Sciences, 7,1296.
  • Thury, Y., & Van Hess, M. (2008). Evolution of pH, organic matter and (226) Radium/calcium partitioning in U-mining debris following revegetation with pine trees. Science of the Total Environment, 393,111-117.
  • Salt, D.E., & Wagner, R.J. (1993). Cadmium transport across the tonoplast of vesicles from oat roots evidence for a Cd2+/H+ antiport activity. Journal of Biological Chemistry, 268, 12297-12307.
  • Kabata-Pendias, &A., Pendias, H. (2001). Trace elements in soils and plants. 3rd Edition, CRC Press, Boca Raton, 403 p.

Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) Under Cadmium and Zinc Stress

Yıl 2022, Cilt: 8 Sayı: 2, 98 - 106, 26.12.2022
https://doi.org/10.55385/kastamonujes.1151603

Öz

In this study, the effects of Cd and Zn applications on the activity concentration and transfer factors in the Japanaesebarberry, Boxwood, and Gold tassel leaves were investigated using gamma-ray spectrometry. The mean concentrations (in Bq kg-1) of radionuclides in the studied soil samples were found to be 289.40±32.47 for 238U, 241.76±27.47 for 232Th, 783.63±83.46 for 40K, and 31.44±5.63 for R 137Cs while the respective values in the studied species were 168.6±20.1- 288.8±34.5, 145.9±19.1-250.3±32.4, 434.6±52.2-828.4±99.4, and 16.1±1.8-28.3±3.3. The activity concentrations were found to be at the lowest in the control group and 400 µM Zn for all three species, and at the highest level at 25 µM Cd in general in the species. The order of radionuclides by the highest activity concentrations was 40K>238Uz232Th>137C, whereas the order of species was Gold tassel>Boxwood>Japanaese barberry. TF (232U, 232Th, 40K, and 137Cs) values were found to be between 0.583 and 0.998, between 0.604 and 1.036, between 0.555 and 1.057, and between 0.513 and 0.899. And also, while the order of species by the activity concentration was Gold tassel>Boxwood>Japanaese barberry the order of species by the TF values was Boxwood>Gold tassel>Japanaese barberry. In conclusion, plants’ radionuclide activity concentrations were found to be at the highest level in 25 µM Cd group and at the lowest level in the control group. Considering all the data, it can be stated that a low dose of Cd was effective on the radioactivity concentrations and Gold tassel could be used as the indicator plant in radiation pollution.

Kaynakça

  • Isinkaralar, K. (2022). Some atmospheric trace metals deposition in selected trees as a possible biomonitor. Romanian Biotechnological, 27(1), 3227-3236.
  • Bilgici Cengiz, G., & Çağlar, İ. (2019). Determination of natural radioactivity concentrations of some fertilizers used in Eastern Anatolia of Turkey. Caucasian Journal of Science, 6(2), 147-155.
  • Manigandan, P.K., & Chandar Shekar, B. (2014). Uptake of some radionuclides by woody plants growing in the rainforest of Western Ghats in India. Journal of Environment Rdioactivity, 130,63-67.
  • Manigandan, P.K., & Chandar Shekar, B. (2015). Leaves of Woody Plants As Bio-İndicators Of Radionuclides In Forest Ecosystems. Journal of Radioanalytical and Nuclear Chemistry, 303, 911-917.
  • Kılıç, Ö., Belivermiş, M., Topcuoğlu, S., Çotuk, Y., Coşkun, M., Çayır, A., & Küçer, R. (2008). Radioactivity concentrations and dose assessment in surface soil samples from East and South of Marmara region Turkey. Radiation Protection Dosimetry, 128 (3), 324-330.
  • Kumar, A., Sınghal, R.K., Preetha, J., Rupali, K., Naravanan, U., Suresh, S., Mıshra, M.K., & Ranade, A.K. (2008). Impact of tropical ecosystem on the migrational behaviour of K-40, Cs-137, Th-232 U-238 in perennial plants. Water, Air, and Soil Pollution 192(1-4), 293-302.
  • Saenboonruang, K., Phonchanthuek, E., & Prasandee, K. (2018). Soil-to-Plant Transfer Factors of Natural Radionuclides (226Ra and 40K) in Selected Thai Medicinal Plants. Journal of Environmental Radioactivity, 184-185, 1-5.
  • Bréda, N. (2008). Leaf Area Index. Encycl. Ecol. 2148-2154.
  • Doi, T., Masumoto, K., Toyoda, A., Tanaka, A., Shibata, Y., Hirose K. (2013). Anthropogenic radionuclides in the atmosphere observed at Tsukuba: Characteristics of the radionuclides derived from Fukushima. Journal of Environmental Raioactivitiy, 122,55-62.
  • Chandrashekara, K., & Somashekarappa, H. (2015). Soil to plant transfer factors of radionuclides in Ficus racemosa (L.): A medicinal plant. International Research Journal of Biological Sciences, 4(9), 43-47.
  • Özden, S., & Aközcan, S. (2020). Determınatıon of radıonuclıde transfer in sunflower on agrıcultural lands in Kırklareli. Kırklareli University Journal of Engineering and Science, 6(2),153-16.
  • Bramki, A., Ramdhane, M., Benrachi, F. (2018). Natural radioelement concentrations in fertilizers and the soil of the Mila Region of Algeria. Journal of Radiation Research and Applied Sciences, (11),49-55.
  • Chen, S., Wang, Q., Lu, H, Li, J., Yang, D., Liu, J., Yan, C. (2019). Phenolic Metabolism and Related Heavy Metal Tolerance Mechanism in Kandelia obovata under Cd and Zn Stress. Ecotoxicology And Environmental Safety, 169,134-143.
  • Kandziora-Ciupa, M., Ciepał, R., Nadgo´rska-Socha, A., & Barczyk, G. (2016). Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. Needles in Polluted and non-Polluted Sites. Ecotoxicology, 25,70-981.
  • Turfan, N., Kunaz, A., & Sarıyıldız, T. (2021). Effect of air pollution on element profile and radioactive compounds in six tree species. Tree and Forest 2(2),82-92.
  • Saleh, E.A.A., & Işınkaralar, Ö. (2022). Analysis of trace elements accumulation in some landscape plants as an indicator of pollution in an urban environment: Case of Ankara. Kastamonu University Journal of Engineering and Sciences, 8(1)1-5.
  • Karakeçi, H., Kaya, Ö.F., Çelik, T.H. (2021). An Investigation on heavy metal pb, zn, cu, ni and cd accumulation in leaves of Robinia Pseudoacacia L. “Umbraculifera” arising from motor vehicles. Kastamonu University Journal of Engineering and Sciences 7(2)114-126.
  • Kılıç, Ö. (2012). Bıomonıtorıng of 137Cs, 40K, 232Th, and 238U usıng oak bark in Belgrade Forest, Istanbul, Turkey. Nuclear Technolog and Radiation Orotection, 27(2),137-143.
  • Kurnaz A., &Turfan N (2017). The effect of different storage conditions on the radiometric and element content of the Taşköprü garlic (Allium sativum). Turkish Journal of Agricultue-Food Science and Technology, 5(4), 373-379.
  • Bilgici Cengiz, G., & Çağlar, İ. (2022). Transfer Factors of Natural Radionuclides from Soil to Medicinal Plants Used by Local People in Eastern Anatolia, Turkey. International Journal of Environment and Geoinformatics, 9(2), 039-044.
  • Pekşen, A., Kurnaz, A., Turfan, N., & Kibar, B. (2021). Determination of radioactivity levels in different mushroom species from Turkey. Yuzuncu Yil University Journal of Agricultural Science, 31(1), 30-41.
  • Kaya, S., Karabıdak, S.M., & Çevik, U. (2015). Determination of natural (226ra, 232ta and 40k) and artificial (137cs) radioactivity concentrations in soil and moss samples collected from around Gümüşhane. Gümüşhane Unversity Journal of Science and Technology, 5 (1), 24-33.
  • Kurnaz, A., Turhan, Ş., & Alzaridi, F.M.N.S. (2021). Radiological and physicochemical properties of drinking waters consumed in the Western Black Sea Region of Turkey. Journal of Radioanalytical Nuclear Chemistry, 328, 805-814.
  • Gülçur, F. (1974). Physical and chemical analysis methods of soil. Istanbul University Faculty of Forestry Publications No: 201, Istanbul.
  • Adesiji, N.E., & Ademola, J.A. (2019). Soil-to-maize Transfer Factor of Natural Radionuclides in a Tropical Ecosystem of Nigeria. Nigeria Journal of Pure & Applied Physics, 9(1),6-10.
  • Lamarque, S., Lucot, E., & Badot, P.M. (2005). Soil-plant transfer of radiocaesium in weakly contaminated forest ecosystems. Radioprotection, 1(40),407-412.
  • Absar, N., Abedin, J., Rahman, M.M., Miah, M.M.H., Siddique, N., Kamal, M., Chowdhury, M.I., Sulieman, A., Faruque, M.R.I., Khandaker, M.U., Bradley, D.A., & Alsubaie, A. (2021). Radionuclides transfer from soil to tea leaves and estimation of committed effective dose to the Bangladesh Populace. Life, 11, 282.
  • Tshivhase, V.M., Njinga, R.L., Mathuthu, M., & Dlamini, T.C. (2015). Transfer rates of 238U and 232Th for E. globulus, A. mearnsii, H. filipendula and hazardous effects of the usage of medicinal plants from around gold mine dump environs. International Journal of Environmental Research and Public Health 12(12), 15782-15793.
  • Marschner, H., & Marschner, P. (2012). Marschner’s mineral nutrition of higher plants, 3rd ed. (San Diego, Elsevier Academic Press), 1-651.
  • Mordoğan, N., Ceylan, Ş., Delibacak, S., Çakıcı, H., Günen, E., Pekcan, T., & Çolak, B. (2012). Effect of organic fertilization to nutrients content in soils cultivated olives. Journal of Adnan Menderes University Agricultural Faculty, 10(3),7-13.
  • Chakraborty, S.R., Azim, R., Rahman, A.R., & Sarker, R. (2013). Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the Chittagong City of Bangladesh. Journal of Physical Science, 24 (1), 95.
  • Bilgici Cengiz, G., & Çaglar, İ. (2021). Determınatıon of the natural radıoactıvıty dıstrıbutıon and consumptıon effectıve dose rate ff cereal crops in Ardahan Provınce, Turkey. Journal of Scientific Reports-A, 47, 174-183.
  • Shayeb MA, Alharbi T, Baloch MA, Rahman Alsamhan OA (2017). Transfer Factors for Natural Radioactivity into Date Palm Pits. Journal of Environmenta Radioactivity, 167,75-79.
  • Hadrovıć, S.H., Čelıkovıć I.T., Krneta Nıkolıć, J.D., Rajačıć M.M., & Todorovıć, D.J. (2021). Radıonuclıdes’ content in forest ecosystem located in southwestern part of Serbıa. Nuclear Technology and Radiation Protection, 36(2),192-196.
  • Kant, S., Kant, P., & Kafkafi, U. (2005). Potassium uptake by higher plants: from field application to membrane transport. Acta Agronomica Hungarica, 53, 443-459.
  • Wilkins, K.A., Matthus, E., Swarbreck, S. M., & Davies, J.M. (2016). Calcium Mediated Abiotic Stress Signaling in Roots. Frontie in Olant Sciences, 7,1296.
  • Thury, Y., & Van Hess, M. (2008). Evolution of pH, organic matter and (226) Radium/calcium partitioning in U-mining debris following revegetation with pine trees. Science of the Total Environment, 393,111-117.
  • Salt, D.E., & Wagner, R.J. (1993). Cadmium transport across the tonoplast of vesicles from oat roots evidence for a Cd2+/H+ antiport activity. Journal of Biological Chemistry, 268, 12297-12307.
  • Kabata-Pendias, &A., Pendias, H. (2001). Trace elements in soils and plants. 3rd Edition, CRC Press, Boca Raton, 403 p.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Nezahat Turfan 0000-0002-5753-0390

Erkan Genç Bu kişi benim 0000-0002-8633-1251

Yayımlanma Tarihi 26 Aralık 2022
Gönderilme Tarihi 31 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 2

Kaynak Göster

APA Turfan, N., & Genç, E. (2022). Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) Under Cadmium and Zinc Stress. Kastamonu University Journal of Engineering and Sciences, 8(2), 98-106. https://doi.org/10.55385/kastamonujes.1151603
AMA Turfan N, Genç E. Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) Under Cadmium and Zinc Stress. KUJES. Aralık 2022;8(2):98-106. doi:10.55385/kastamonujes.1151603
Chicago Turfan, Nezahat, ve Erkan Genç. “Radiometric Measurements in of Japanese Barberry (Berberis Thunbergii DC.), Boxwood (Buxus Sempervirens L.) and Gold Tassel (Euonymus Japonica Thunb.) Under Cadmium and Zinc Stress”. Kastamonu University Journal of Engineering and Sciences 8, sy. 2 (Aralık 2022): 98-106. https://doi.org/10.55385/kastamonujes.1151603.
EndNote Turfan N, Genç E (01 Aralık 2022) Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) Under Cadmium and Zinc Stress. Kastamonu University Journal of Engineering and Sciences 8 2 98–106.
IEEE N. Turfan ve E. Genç, “Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) Under Cadmium and Zinc Stress”, KUJES, c. 8, sy. 2, ss. 98–106, 2022, doi: 10.55385/kastamonujes.1151603.
ISNAD Turfan, Nezahat - Genç, Erkan. “Radiometric Measurements in of Japanese Barberry (Berberis Thunbergii DC.), Boxwood (Buxus Sempervirens L.) and Gold Tassel (Euonymus Japonica Thunb.) Under Cadmium and Zinc Stress”. Kastamonu University Journal of Engineering and Sciences 8/2 (Aralık 2022), 98-106. https://doi.org/10.55385/kastamonujes.1151603.
JAMA Turfan N, Genç E. Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) Under Cadmium and Zinc Stress. KUJES. 2022;8:98–106.
MLA Turfan, Nezahat ve Erkan Genç. “Radiometric Measurements in of Japanese Barberry (Berberis Thunbergii DC.), Boxwood (Buxus Sempervirens L.) and Gold Tassel (Euonymus Japonica Thunb.) Under Cadmium and Zinc Stress”. Kastamonu University Journal of Engineering and Sciences, c. 8, sy. 2, 2022, ss. 98-106, doi:10.55385/kastamonujes.1151603.
Vancouver Turfan N, Genç E. Radiometric Measurements in of Japanese barberry (Berberis thunbergii DC.), Boxwood (Buxus sempervirens L.) and Gold tassel (Euonymus japonica Thunb.) Under Cadmium and Zinc Stress. KUJES. 2022;8(2):98-106.