Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 9 Sayı: 2, 46 - 52, 26.12.2023
https://doi.org/10.55385/kastamonujes.1333878

Öz

Destekleyen Kurum

Kastamonu Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

KUBAP01-2018-55

Kaynakça

  • Oren, A., Ventosa, A., & Grant, W. D. (1997). Proposed minimal standards for description of new taxa in the order Halobacteriales. International journal of systematic and evolutionary microbiology, 47(1), 233-238.
  • Thakur, M., & Modi, V. K. (2022). Biocolorants in food: Sources, extraction, applications and future prospects. Critical Reviews in Food Science and Nutrition, 1-40.
  • Patkar, S., Shinde, Y., Chindarkar, P., & Chakraborty, P. (2021). Evaluation of antioxidant potential of pigments extracted from Bacillus spp. and Halomonas spp. isolated from mangrove rhizosphere. BioTechnologia, 102(2), 157.
  • Litchfield, C. D. (2011). Potential for industrial products from the halophilic Archaea. Journal of Industrial Microbiology and Biotechnology, 38(10), 1635.
  • Henciya, S., Vengateshwaran, T. D., Gokul, M. S., Dahms, H. U., & James, R. A. (2020). Antibacterial activity of halophilic bacteria against drug-resistant microbes associated with diabetic foot infections. Current Microbiology, 77, 3711-3723.
  • Fariq, A., Yasmin, A., & Jamil, M. (2019). Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles, 23, 435-449.
  • Chen, L., Wang, G., Bu, T., Zhang, Y., Wang, Y., Liu, M., & Lin, X. (2010). Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World Journal of Microbiology and Biotechnology, 26, 879-888.
  • Enache, M., & Kamekura, M. (2013). Halophilic archaea in the Neogene salt massif from Slănic Prahova, Romania. Oltenia. Studii şi Comunicări. Stiinţele Naturii, 29, 237-243.
  • Dussault, H. P. (1955). An improved technique for staining red halophilic bacteria. Journal of bacteriology, 70(4), 484.
  • Neumann, B., Pospiech, A., & Schairer, H. U. (1992). Rapid isolation of genomic DNA from gram-negative bacteria. Trends in Genetics, 8(10), 332-333.
  • Kesbiç, F. I., & Gültepe, N. (2022). C50 carotenoids extracted from Haloterrigena thermotolerans strain K15: Antioxidant potential and identification. Folia Microbiologica, 67(1), 71-79.
  • Kesbiç, F. I., & Gültepe, N. (2023). Bioactive components, sun protective properties, and total phenolic contents of halobacterial extracts. Biochemical Systematics and Ecology, 108, 104647.
  • Spring, S., Ludwig, W., Marquez, M. C., Ventosa, A., & Schleifer, K. H. (1996). Halobacillus gen. nov., with Descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and Transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 46(2), 492-496.
  • Marshall, J. H., & Wilmoth, G. J. (1981). Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. Journal of bacteriology, 147(3), 900-913.
  • Giani, M., Montoyo-Pujol, Y. G., Peiró, G., & Martínez-Espinosa, R. M. (2023). Haloarchaeal carotenoids exert an in vitro antiproliferative effect on human breast cancer cell lines. Scientific Reports, 13(1), 7148.
  • Caglayan, P., Birbir, M. E. R. A. L., Sánchez-Porro, C., & Ventosa, A. (2017). Screening of industrially important enzymes produced by moderately halophilic bacteria isolated from salted sheep skins of diverse origin. Journal of the American Leather Chemists Association, 112(06), 207-216.
  • Kuchina, N. (2015). U.S. Patent Application No. 14/666,823.
  • Kuchina, N. (2018). U.S. Patent Application No. 15/796,897.
  • Herwig, C., Loranfty, B. & Porqueras, E. M. (2017). European Patent Aplication No. EP2712919B1.
  • Umeno, T., Kobayashi, M., Misawa, N. & Takaichi, S. (2012). Worldwide Application No. WO2012169623A1
  • Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental technology, 31(8-9), 825-834.

Halobacillus trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine

Yıl 2023, Cilt: 9 Sayı: 2, 46 - 52, 26.12.2023
https://doi.org/10.55385/kastamonujes.1333878

Öz

Halophilic microorganisms are an extreme group of organisms that can spread at high salt concentrations, and a significant part of them consists of halophilic bacteria. Salt mines are important sources where halophilic bacteria are detected. In this study, Halobacillus trueperi CT7, a halophilic bacterium, was isolated from Çankırı Salt Mine. It was determined that the obtained strain showed 98.1% similarity with Halobacillus trueperi by DNA isolation and sequence analysis as well as biochemical analysis. In addition, two-dimensional (scanning electron microscopy) and three-dimensional (atomic force microscopy) images of Halobacillus trueperi were performed to reveal the cell morphology. In order to determine the industrial use potential of the microorganism, the minimum and maximum salt concentrations, temperature and pH ranges in which the species can grow, as well as the enzyme activities, where the species can grow, were determined qualitatively. The interest in halophilic organisms for their use in extreme industrial processes is increasing day by day. It is thought that this study will contribute to future studies on halophilic bacteria.

Proje Numarası

KUBAP01-2018-55

Kaynakça

  • Oren, A., Ventosa, A., & Grant, W. D. (1997). Proposed minimal standards for description of new taxa in the order Halobacteriales. International journal of systematic and evolutionary microbiology, 47(1), 233-238.
  • Thakur, M., & Modi, V. K. (2022). Biocolorants in food: Sources, extraction, applications and future prospects. Critical Reviews in Food Science and Nutrition, 1-40.
  • Patkar, S., Shinde, Y., Chindarkar, P., & Chakraborty, P. (2021). Evaluation of antioxidant potential of pigments extracted from Bacillus spp. and Halomonas spp. isolated from mangrove rhizosphere. BioTechnologia, 102(2), 157.
  • Litchfield, C. D. (2011). Potential for industrial products from the halophilic Archaea. Journal of Industrial Microbiology and Biotechnology, 38(10), 1635.
  • Henciya, S., Vengateshwaran, T. D., Gokul, M. S., Dahms, H. U., & James, R. A. (2020). Antibacterial activity of halophilic bacteria against drug-resistant microbes associated with diabetic foot infections. Current Microbiology, 77, 3711-3723.
  • Fariq, A., Yasmin, A., & Jamil, M. (2019). Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles, 23, 435-449.
  • Chen, L., Wang, G., Bu, T., Zhang, Y., Wang, Y., Liu, M., & Lin, X. (2010). Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World Journal of Microbiology and Biotechnology, 26, 879-888.
  • Enache, M., & Kamekura, M. (2013). Halophilic archaea in the Neogene salt massif from Slănic Prahova, Romania. Oltenia. Studii şi Comunicări. Stiinţele Naturii, 29, 237-243.
  • Dussault, H. P. (1955). An improved technique for staining red halophilic bacteria. Journal of bacteriology, 70(4), 484.
  • Neumann, B., Pospiech, A., & Schairer, H. U. (1992). Rapid isolation of genomic DNA from gram-negative bacteria. Trends in Genetics, 8(10), 332-333.
  • Kesbiç, F. I., & Gültepe, N. (2022). C50 carotenoids extracted from Haloterrigena thermotolerans strain K15: Antioxidant potential and identification. Folia Microbiologica, 67(1), 71-79.
  • Kesbiç, F. I., & Gültepe, N. (2023). Bioactive components, sun protective properties, and total phenolic contents of halobacterial extracts. Biochemical Systematics and Ecology, 108, 104647.
  • Spring, S., Ludwig, W., Marquez, M. C., Ventosa, A., & Schleifer, K. H. (1996). Halobacillus gen. nov., with Descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and Transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 46(2), 492-496.
  • Marshall, J. H., & Wilmoth, G. J. (1981). Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. Journal of bacteriology, 147(3), 900-913.
  • Giani, M., Montoyo-Pujol, Y. G., Peiró, G., & Martínez-Espinosa, R. M. (2023). Haloarchaeal carotenoids exert an in vitro antiproliferative effect on human breast cancer cell lines. Scientific Reports, 13(1), 7148.
  • Caglayan, P., Birbir, M. E. R. A. L., Sánchez-Porro, C., & Ventosa, A. (2017). Screening of industrially important enzymes produced by moderately halophilic bacteria isolated from salted sheep skins of diverse origin. Journal of the American Leather Chemists Association, 112(06), 207-216.
  • Kuchina, N. (2015). U.S. Patent Application No. 14/666,823.
  • Kuchina, N. (2018). U.S. Patent Application No. 15/796,897.
  • Herwig, C., Loranfty, B. & Porqueras, E. M. (2017). European Patent Aplication No. EP2712919B1.
  • Umeno, T., Kobayashi, M., Misawa, N. & Takaichi, S. (2012). Worldwide Application No. WO2012169623A1
  • Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental technology, 31(8-9), 825-834.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Araştırma Makalesi
Yazarlar

Fevziye Işıl Kesbiç 0000-0003-3942-5703

Nejdet Gültepe 0000-0003-4332-522X

Naci Tüzemen 0000-0001-8804-5323

Proje Numarası KUBAP01-2018-55
Yayımlanma Tarihi 26 Aralık 2023
Gönderilme Tarihi 28 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kesbiç, F. I., Gültepe, N., & Tüzemen, N. (2023). Halobacillus trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine. Kastamonu University Journal of Engineering and Sciences, 9(2), 46-52. https://doi.org/10.55385/kastamonujes.1333878
AMA Kesbiç FI, Gültepe N, Tüzemen N. Halobacillus trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine. KUJES. Aralık 2023;9(2):46-52. doi:10.55385/kastamonujes.1333878
Chicago Kesbiç, Fevziye Işıl, Nejdet Gültepe, ve Naci Tüzemen. “Halobacillus Trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine”. Kastamonu University Journal of Engineering and Sciences 9, sy. 2 (Aralık 2023): 46-52. https://doi.org/10.55385/kastamonujes.1333878.
EndNote Kesbiç FI, Gültepe N, Tüzemen N (01 Aralık 2023) Halobacillus trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine. Kastamonu University Journal of Engineering and Sciences 9 2 46–52.
IEEE F. I. Kesbiç, N. Gültepe, ve N. Tüzemen, “Halobacillus trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine”, KUJES, c. 9, sy. 2, ss. 46–52, 2023, doi: 10.55385/kastamonujes.1333878.
ISNAD Kesbiç, Fevziye Işıl vd. “Halobacillus Trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine”. Kastamonu University Journal of Engineering and Sciences 9/2 (Aralık 2023), 46-52. https://doi.org/10.55385/kastamonujes.1333878.
JAMA Kesbiç FI, Gültepe N, Tüzemen N. Halobacillus trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine. KUJES. 2023;9:46–52.
MLA Kesbiç, Fevziye Işıl vd. “Halobacillus Trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine”. Kastamonu University Journal of Engineering and Sciences, c. 9, sy. 2, 2023, ss. 46-52, doi:10.55385/kastamonujes.1333878.
Vancouver Kesbiç FI, Gültepe N, Tüzemen N. Halobacillus trueperi CT7: A Spore-Forming, Gelatinase Producing, Salt-Tolerant Bacteria Isolated from Çankırı Salt Mine. KUJES. 2023;9(2):46-52.