BibTex RIS Cite

Isı Şoku Protein Ailesinden Hsp70 Genlerinin Okaliptüs Genomunda Saptanması ve Karakterizasyonu

Year 2016, , 0 - 0, 30.11.2016
https://doi.org/10.17475/kastorman.289759

Abstract

Isı şoku proteinleri (Heat shock proteins: Hsp), birçok canlıda hücre büyümesi ve canlılığının devamı için kritik öneme sahiptir. Hsp70 proteinleri, Hsp’lerin bir sınıfıdır ve yeni sentezlenmiş veya yanlış katlanmış proteinlerin katlanmasında, bir araya gelerek çökmesinin engellenmesinde, membran boyunca taşınmasında ve düzenleyici proteinlerin aktivitesinin kontrolünde rol alırlar. Okaliptüs (Eucalyptus grandis), evrimsel ve ekolojik durumu ve marjinal bölgelere uyum yetenekleri sebebiyle çok yıllık bitkilerin biyolojisi ve evrimi hakkında önemli bilgilere ulaşılmasını sağlayabilecek önemli bir bitkidir. Tüm genom dizisi çıkarılan okaliptüste Hsp proteinleri henüz belirlenmemiştir. Bu amaçla, bu önemli bitkide biyoinformatik araçlar kullanılarak 21 adet Hsp70 geni (EgHsp70) tanımlanmıştır. En fazla EgHsp70 geni (7 adet) 10. okaliptüs kromozomu üzerinde bulunurken 1, 2, 4 ve 11. kromozomlarda bu genlere rastlanmamıştır. Evrimsel ilişkilerini tespit etmek amacıyla belirlenen proteinler için filogenetik ağaç oluşturulmuştur. Bu ağaca göre EgHsp70 proteinleri 5 ayrı sınıfa ayrılmış ve aynı sınıfta yer alan proteinlerin gen yapısının benzer ekzon-intron organizasyonuna sahip olduğu görülmüştür. Okaliptüs Hsp70 proteinlerinin tahmini moleküler fonksiyon şekli, bağlanma aktivitesi olurken, biyolojik işlevlerinin ise organizmaya özgü ve metabolik işlevlerdeki rolleri olduğu belirlenmiştir. Hücrede en çok yerleşim gösterdikleri yerler organel, hücre içi veya hücre bölümü kısımları olurken, tahmini sekonder yapılarında sıklıkla α-heliks zincirlerinin bulunduğu ve bu proteinlerin tamamının asidik karakterde (pI<7) olduğu gözlenmiştir. Çalışma, EgHsp70 genlerinin fonksiyonlarının çalışılması için sonraki çalışmalara ışık tutucu niteliktedir ve farklı türlerde Hsp70 genlerinin evriminin anlaşılmasına önemli katkılar sağlayabilir. 

References

  • Alvim F.C., Carolino S.M., Cascardo J.C., Nunes C.C., Martinez C.A., Otoni W.C., Fontes E.P. 2001. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126,1042–1054.
  • Bartholomé J., Mandrou E., Mabiala A., Jenkins J., Nabihoudine I., Klopp C., Schmutz J., Plomion C., Gion J.M. 2015. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. The New phytologist, 206 (4), 1283-96.
  • Bukau B. and Horwich A.L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351-366.
  • Byrne, M. Phylogeny, diversity and evolution of eucalypts. in Plant Genome: Biodiversity and Evolution, Part E: Phanerogams-Angiosperm Vol. 1 (eds Sharma, A. K. & Sharma, A.) 303–346 (Science Publishers, 2008).
  • Cho E.K., and Choi Y.J. 2009. A nuclear-localized HSP70 confers thermo protective activity and drought-stress tolerance on plants. Biotechnol Lett 31, 597–606.doi:10.1007/s10529-008-9880-5.
  • Conesa A., Götz S. 2008. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 619832.
  • Dragovic Z., Broadley S.A., Shomura Y., Bracher A., Hartl F.U. 2006. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528.
  • Duck N.B., Folk W.R. 1994. Hsp70 heat shock protein cognate is expressed and stored in developing tomato pollen. Plant Mol Biol 26:1031–103.
  • Hartl F.U., Bracher A., Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–332.
  • He Z., Xie R., Wang Y., Zou H., Zhu J., and Yu, G. 2008. Cloning and characterization of a heat shock protein 70 gene, MsHSP70-1, in Medicago sativa. Acta Biochim Biophys Sin 40,209–216.doi:10.1111/j.1745- 7270.2008.00394.x
  • Hu B., Jin J., Guo A.Y., Zhang H., Luo J. and Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8):1296-1297.
  • Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., and Bairoch A. 2003. ExPASy: theproteomicsserverforin-depthprotein knowledge and analysis. Nucl Acids Res 31,3784–3788.doi:10.1093/nar/ gkg563.
  • Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., Rokshar D.S. 2012. Phytozome: a 14 comparative platform for green plant genomics. Nucleic Acids Res, 40: D1178–D1186.
  • Gülbaba A.G. 1990. Okaliptus’ta Döl Denemeleri, Doğu Akdeniz Ormancılık Araştırma Enstitüsü Dergisi, Tarsus.
  • Iglesias I. & Wiltermann, D. in Eucalyptologics Information Resources on Eucalypt Cultivation Worldwide http://www.git-forestry.com (GIT Forestry Consulting, retrieved, 29 March 2009).
  • Jung K.H., Gho H.J., Nguyen M.X., Kim S.R., An G. 2013. Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 13(3):391–402. doi:10.1007/s10142-013-0331-6.
  • Jungkunz I., Link K., Vogel F., Voll L.M., Sonnewald S., and Sonnewald U. 2011. AtHSP70-15-deficientArabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. PlantJ. 66, 983–995.doi:10.1111/j.1365-313X.2011.04558.x
  • Kelley L.A., Sternberg M.J.E. 2009. Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371.
  • Krishna P., Sacco M., Cherutti J.F. and Hill S. 1995. Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol. 107,915–923.
  • Kumar R., Nagarajan N.S., Arunraj S.P., Devanjan S., Rajan V.B.V., Esthaki V.K., and D’Silva P. 2012. HSPIR: a manually annotated heat shock protein information resource. Bioinformatics, 28 (21): 2853-2855.
  • Letunic I., Doerks T., Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):D302–D305. doi:10.1093/nar/gkr931.
  • Letunic I., Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res doi: 10.1093/nar/gkw290.
  • Lin B.L., Wang J.S., Liu H.C., Chen R.W., Meyer Y., Barakat A, Delseny M. 2001. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6(3):201–208.
  • Lopez-Matas M.A., Nuñez P., Soto A., Allona I., Casado R., Collada C., et al. 2004. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up- regulated by low and high temperatures. PlantPhysiol. 134,1708–1717.doi: 10.1104/pp.103.035857.
  • Lund P.A. 2001. Molecular chaperones in the cell. Oxford University Press, Oxford.
  • Mayer M.P. and Bukau, B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci, 62, 670-684.
  • Maruyama D., Endo T., Nishikawa S. 2010. BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:1684– 1689.
  • Myburg A.A., Grattapaglia D., Tuskan G.A., Hellsten U., Hayes R.D., Grimwood J., ... & Goodstein D.M. 2014. The genome of Eucalyptus grandis. Nature, 510 (7505), 356-362.
  • Qi Y., Wang H., Zou Y., Liu C., Liu Y., Wang Y., Zhang W. 2011. Overexpression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239.
  • Ritossa F. 1996. Discovery of the heat shock response. Cell Stress Chaperones 1, 97–98.
  • Sabehat A., Lurie S., and Weiss D. 1998. Expression of small heat-shock protein sat low temperatures. A possible role in protecting against chilling injuries. Plant Physiol 117,651–658.doi:10.1104/pp.117.2.651.
  • Sarkar N.K., Kundnani P., Grover A. 2013. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18(4):427–437.
  • Sung D.Y., Vierling E., Guy C.L. 2001. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126(2):789–800.
  • Su P.H. Li H.M. 2008. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241.
  • Swindell W.R., Huebner M., and Weber A.P. 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125.doi:10.1186/1471-2164-8-125.
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739.
  • Thompson J.D., Gibson T.J., Plewniak F. et al. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876.
  • Voorrips R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78.
  • Wakasa Y., Yasuda H., Oono Y., Kawakatsu T., Hirose S., Takahashi H., Hayashi S., Yang L., Takaiwa F. 2011. Expression of ER qualitycontrol-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J 65:675–689.
  • Wang W., Vinocur B., Shoseyov O., and Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252.doi:10.1016/j.tplants.2004.03.006.
  • Yer E.N., Baloglu M.C., Ziplar U.T., Ayan S., Unver T. 2016. Drought-Responsive Hsp70 Gene Analysis in Populus at Genome-Wide Level. Plant Mol Biol Rep, 34:483–500. DOI 10.1007/s11105-015-0933-3.
  • Zhang L., Zhao H.K., Dong Q.L., Zhang Y.Y., Wang Y.M., Li H.Y., ... & Dong Y.S. 2015. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.).Frontiers in plant science, 6.
  • Zhang Y., Wang M., Chen J., Rong J., Ding M. 2014. Genome-wide analysis of HSP70 superfamily in Gossypium raimondii and the expression of orthologs in Gossypium hirsutum. Yi Chuan 36(9):921–33. doi:10.3724/SP.J.1005.2014.0921. (Article in Chinese)
  • Zhang J., Liu B., Li J., Zhang L., Wang Y., Zheng H., Lu M., Chen J. 2015. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16:181. doi:10.1186/s12864-015-1398-3.
  • Zou J., Liu C., Liu A., Zou D., and Chen X. 2012. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol. 169, 628–635.doi:10.1016/j.jplph.2011.12.014.

Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome

Year 2016, , 0 - 0, 30.11.2016
https://doi.org/10.17475/kastorman.289759

Abstract

Abstract
Heat shock proteins (Hsp) are critically important for cellular development and viability in many organisms. Hsp70
proteins are a group of Hsps and responsible for folding of newly synthesized or misfolded proteins, prevention of their
aggregation, carriage of them along the membrane and control of regulatory protein activities. Eucalyptus (Eucalyptus
grandis) is an important plant to reach considerable knowledge about biology and evolution of perennial plants due to
its evolutionary and ecological position and ability to adapt to marginal regions. Whole genome sequence of eucalyptus
was analyzed but Hsps have not been determined yet. Using bioinformatics tools, 21 Hsp70 genes (EgHsp70) were
determined in this important plant. The highest number of EgHsp70 genes were located on the 10th chromosome (7
genes) but 1st, 2nd, 4th and 11th chromosomes do not carry Hsp70 genes on them. Phylogenetic tree was constructed
to determine evolutionary relationships of defined proteins. According to phylogenetic tree, EgHsp70 proteins were
divided into 5 clusters and proteins which were in the same clusters had similar exon-intron organization. Predicated
molecular function style of eucalyptus Hsp70 proteins was binding activity and their roles in single organism process
and metabolic process determined as their biological activities. They were found mostly in the inner part of the cell,
organelle or cell parts and their predicated secondary structures were constructed by mostly α-helix chains and all these
proteins were acidic (pI<7). This study may be instructive for further researches and may be helpful for understanding
of evolution of Hsp70 genes in different species.
Keywords: Heat shock proteins (Hsp), Eucalyptus grandis, genome wide identification, gene ontology analysis,
phylogenetic tree

References

  • Alvim F.C., Carolino S.M., Cascardo J.C., Nunes C.C., Martinez C.A., Otoni W.C., Fontes E.P. 2001. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126,1042–1054.
  • Bartholomé J., Mandrou E., Mabiala A., Jenkins J., Nabihoudine I., Klopp C., Schmutz J., Plomion C., Gion J.M. 2015. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly. The New phytologist, 206 (4), 1283-96.
  • Bukau B. and Horwich A.L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351-366.
  • Byrne, M. Phylogeny, diversity and evolution of eucalypts. in Plant Genome: Biodiversity and Evolution, Part E: Phanerogams-Angiosperm Vol. 1 (eds Sharma, A. K. & Sharma, A.) 303–346 (Science Publishers, 2008).
  • Cho E.K., and Choi Y.J. 2009. A nuclear-localized HSP70 confers thermo protective activity and drought-stress tolerance on plants. Biotechnol Lett 31, 597–606.doi:10.1007/s10529-008-9880-5.
  • Conesa A., Götz S. 2008. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, 619832.
  • Dragovic Z., Broadley S.A., Shomura Y., Bracher A., Hartl F.U. 2006. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528.
  • Duck N.B., Folk W.R. 1994. Hsp70 heat shock protein cognate is expressed and stored in developing tomato pollen. Plant Mol Biol 26:1031–103.
  • Hartl F.U., Bracher A., Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–332.
  • He Z., Xie R., Wang Y., Zou H., Zhu J., and Yu, G. 2008. Cloning and characterization of a heat shock protein 70 gene, MsHSP70-1, in Medicago sativa. Acta Biochim Biophys Sin 40,209–216.doi:10.1111/j.1745- 7270.2008.00394.x
  • Hu B., Jin J., Guo A.Y., Zhang H., Luo J. and Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8):1296-1297.
  • Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., and Bairoch A. 2003. ExPASy: theproteomicsserverforin-depthprotein knowledge and analysis. Nucl Acids Res 31,3784–3788.doi:10.1093/nar/ gkg563.
  • Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N., Rokshar D.S. 2012. Phytozome: a 14 comparative platform for green plant genomics. Nucleic Acids Res, 40: D1178–D1186.
  • Gülbaba A.G. 1990. Okaliptus’ta Döl Denemeleri, Doğu Akdeniz Ormancılık Araştırma Enstitüsü Dergisi, Tarsus.
  • Iglesias I. & Wiltermann, D. in Eucalyptologics Information Resources on Eucalypt Cultivation Worldwide http://www.git-forestry.com (GIT Forestry Consulting, retrieved, 29 March 2009).
  • Jung K.H., Gho H.J., Nguyen M.X., Kim S.R., An G. 2013. Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct Integr Genomics 13(3):391–402. doi:10.1007/s10142-013-0331-6.
  • Jungkunz I., Link K., Vogel F., Voll L.M., Sonnewald S., and Sonnewald U. 2011. AtHSP70-15-deficientArabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. PlantJ. 66, 983–995.doi:10.1111/j.1365-313X.2011.04558.x
  • Kelley L.A., Sternberg M.J.E. 2009. Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371.
  • Krishna P., Sacco M., Cherutti J.F. and Hill S. 1995. Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol. 107,915–923.
  • Kumar R., Nagarajan N.S., Arunraj S.P., Devanjan S., Rajan V.B.V., Esthaki V.K., and D’Silva P. 2012. HSPIR: a manually annotated heat shock protein information resource. Bioinformatics, 28 (21): 2853-2855.
  • Letunic I., Doerks T., Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(D1):D302–D305. doi:10.1093/nar/gkr931.
  • Letunic I., Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res doi: 10.1093/nar/gkw290.
  • Lin B.L., Wang J.S., Liu H.C., Chen R.W., Meyer Y., Barakat A, Delseny M. 2001. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6(3):201–208.
  • Lopez-Matas M.A., Nuñez P., Soto A., Allona I., Casado R., Collada C., et al. 2004. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up- regulated by low and high temperatures. PlantPhysiol. 134,1708–1717.doi: 10.1104/pp.103.035857.
  • Lund P.A. 2001. Molecular chaperones in the cell. Oxford University Press, Oxford.
  • Mayer M.P. and Bukau, B. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci, 62, 670-684.
  • Maruyama D., Endo T., Nishikawa S. 2010. BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:1684– 1689.
  • Myburg A.A., Grattapaglia D., Tuskan G.A., Hellsten U., Hayes R.D., Grimwood J., ... & Goodstein D.M. 2014. The genome of Eucalyptus grandis. Nature, 510 (7505), 356-362.
  • Qi Y., Wang H., Zou Y., Liu C., Liu Y., Wang Y., Zhang W. 2011. Overexpression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585:231–239.
  • Ritossa F. 1996. Discovery of the heat shock response. Cell Stress Chaperones 1, 97–98.
  • Sabehat A., Lurie S., and Weiss D. 1998. Expression of small heat-shock protein sat low temperatures. A possible role in protecting against chilling injuries. Plant Physiol 117,651–658.doi:10.1104/pp.117.2.651.
  • Sarkar N.K., Kundnani P., Grover A. 2013. Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones 18(4):427–437.
  • Sung D.Y., Vierling E., Guy C.L. 2001. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126(2):789–800.
  • Su P.H. Li H.M. 2008. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241.
  • Swindell W.R., Huebner M., and Weber A.P. 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8:125.doi:10.1186/1471-2164-8-125.
  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739.
  • Thompson J.D., Gibson T.J., Plewniak F. et al. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876.
  • Voorrips R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78.
  • Wakasa Y., Yasuda H., Oono Y., Kawakatsu T., Hirose S., Takahashi H., Hayashi S., Yang L., Takaiwa F. 2011. Expression of ER qualitycontrol-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J 65:675–689.
  • Wang W., Vinocur B., Shoseyov O., and Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9, 244–252.doi:10.1016/j.tplants.2004.03.006.
  • Yer E.N., Baloglu M.C., Ziplar U.T., Ayan S., Unver T. 2016. Drought-Responsive Hsp70 Gene Analysis in Populus at Genome-Wide Level. Plant Mol Biol Rep, 34:483–500. DOI 10.1007/s11105-015-0933-3.
  • Zhang L., Zhao H.K., Dong Q.L., Zhang Y.Y., Wang Y.M., Li H.Y., ... & Dong Y.S. 2015. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.).Frontiers in plant science, 6.
  • Zhang Y., Wang M., Chen J., Rong J., Ding M. 2014. Genome-wide analysis of HSP70 superfamily in Gossypium raimondii and the expression of orthologs in Gossypium hirsutum. Yi Chuan 36(9):921–33. doi:10.3724/SP.J.1005.2014.0921. (Article in Chinese)
  • Zhang J., Liu B., Li J., Zhang L., Wang Y., Zheng H., Lu M., Chen J. 2015. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16:181. doi:10.1186/s12864-015-1398-3.
  • Zou J., Liu C., Liu A., Zou D., and Chen X. 2012. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol. 169, 628–635.doi:10.1016/j.jplph.2011.12.014.
There are 45 citations in total.

Details

Journal Section Articles
Authors

Yasemin Çelik Altunoğlu

Publication Date November 30, 2016
Published in Issue Year 2016

Cite

APA Çelik Altunoğlu, Y. (2016). Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome. Kastamonu University Journal of Forestry Faculty, 16(2). https://doi.org/10.17475/kastorman.289759
AMA Çelik Altunoğlu Y. Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome. Kastamonu University Journal of Forestry Faculty. December 2016;16(2). doi:10.17475/kastorman.289759
Chicago Çelik Altunoğlu, Yasemin. “Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome”. Kastamonu University Journal of Forestry Faculty 16, no. 2 (December 2016). https://doi.org/10.17475/kastorman.289759.
EndNote Çelik Altunoğlu Y (December 1, 2016) Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome. Kastamonu University Journal of Forestry Faculty 16 2
IEEE Y. Çelik Altunoğlu, “Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome”, Kastamonu University Journal of Forestry Faculty, vol. 16, no. 2, 2016, doi: 10.17475/kastorman.289759.
ISNAD Çelik Altunoğlu, Yasemin. “Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome”. Kastamonu University Journal of Forestry Faculty 16/2 (December 2016). https://doi.org/10.17475/kastorman.289759.
JAMA Çelik Altunoğlu Y. Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome. Kastamonu University Journal of Forestry Faculty. 2016;16. doi:10.17475/kastorman.289759.
MLA Çelik Altunoğlu, Yasemin. “Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome”. Kastamonu University Journal of Forestry Faculty, vol. 16, no. 2, 2016, doi:10.17475/kastorman.289759.
Vancouver Çelik Altunoğlu Y. Determination and Characterization of Hsp70 Genes from Heat Shock Protein Family in Eucalyptus Genome. Kastamonu University Journal of Forestry Faculty. 2016;16(2).

14178  14179       14165           14166           14167            14168