Araştırma Makalesi
BibTex RIS Kaynak Göster

Ahşap-plastik kompozit üretiminde potasyum humat maddesinin değerlendirilmesi

Yıl 2018, , 189 - 202, 15.09.2018
https://doi.org/10.17475/kastorman.346857

Öz

Çalışmanın amacı: Bu çalışmanın amacı potasyum humat maddesinin ahşap-plastik kompozitlerin bazı özelliklerini geliştirmek için bir katkı maddesi olarak kullanılabilirliğinin araştırılmasıdır.

Çalışma alanı: Ahşap-plastik kompozitlerin yangın direnci ve mekanik özellikleri

Materyal ve Yöntem: Orta yoğunluklu lif levha (MDF) tozu ve yüksek yoğunluklu polietilen (HDPE) granülü karışımı paralel ikiz vidalı bir ektrüder kullanılarak pelet haline getirilmiştir. Elde edilen kompozit peletler sıcak presleme işlemi ile levha haline dönüştürülmüştür. Üretilen levhaların bazı mekanik, fiziksel, ısıl ve yangın özellikleri araştırılmıştır. Dahası, kompozitlerin kimyasal özellikleri Fourier Dönüşümü Kızılötesi (FTIR) spektroskopisi kullanılarak analiz edilmiştir.

Sonuçlar: Sonuçlar potasyum humat eklenmesinin çekme ve eğilme dirençlerini sırasıyla %15 ve %9 artırdığını göstermiştir. Bununla birlikte, kompozit örneklerinin su alma ve hacimsel şişme oranları sırasıyla %1,15'ten %2,52'ye kadar ve %3,2'den %5,77'ye kadar artış göstermiştir. LOI ve liner yanma hızı testlerine göre potasyum humat eklenmesi kompozit örneklerinin yangın direncini %3 O2 (LOI) arttırırken yanma hızını 6,62 mm/dk daha düşük olacak şekilde iyileştirmiştir.

Araştırma vurguları: Ahşap-plastik kompozitlere potasyum humat eklenmesi malzemenin yangın, termal ve mekanik özelliklerini belirli derecede geliştirmiştir.

Kaynakça

  • Altuntas, E., Yilmaz, E., Salan, T., & Alma, M. H. (2017). Biodegradation properties of wood-plastic composites containing high content of lignocellulosic filler and zinc borate exposed to two different brown-rot fungi. BioResources, 12(4), 7161-7177.
  • Altuntas, E., Narlioglu, N., & Alma, M.H. (2017). Investigation of the fire, thermal, and mechanical properties of zinc borate and synergic fire retardants on composites produced with pp-mdf wastes. BioResources, 12(4), 6971-6983.
  • Çetin, N. S., Özmen, N., Narlıoğlu, N., & Çavuş, V. (2014). Effect of bark flour on the mechanical properties of HDPE composites. Usak University Journal of Material Sciences, 3(1), 23-32.
  • Deka, B. K., & Maji, T. K. (2010). Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Composites Science and Technology, 70(12), 1755-1761.
  • Eyheraguibel, B., Silvestre, J., & Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology, 99(10), 4206-4212.
  • Fabiyi, J. S., McDonald, A. G., Morrell, J. J., & Freitag, C. (2011). Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Composites Part A: Applied Science and Manufacturing, 42(5), 501-510.
  • Félix, J. S., Domeño, C., & Nerín, C. (2013). Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis. Waste Management, 33(3), 645-655.
  • Franco-Marquès, E., Méndez, J. A., Pèlach, M. A., Vilaseca, F., Bayer, J., & Mutjé, P. (2011). Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal, 166(3), 1170-1178.
  • Fu, S., Song, P., Yang, H., Jin, Y., Lu, F., Ye, J., & Wu, Q. (2010). Effects of carbon nanotubes and its functionalization on the thermal and flammability properties of polypropylene/wood flour composites. Journal of Materials Science, 45(13), 3520-3528.
  • Huuhilo, T., Martikka, O., Butylina, S., & Kärki, T. (2010). Mineral fillers for wood–plastic composites. Wood Material Science and Engineering, 5(1), 34-40.
  • Ibach, R. E., & Clemons, C. M. (2006). Effect of acetylated wood flour or coupling agent on moisture, UV, and biological resistance of extruded woodfiber-plastic composites. Wood Protection, 139-147.
  • Khaled, H., & Fawy, H. A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21-29.
  • Kim, J. K., & Pal, K. (2010). Recent advances in the processing of wood-plastic composites (Vol. 32). Springer Science & Business Media, Berlin.
  • Klyosov, A. A. (2007). Wood-plastic composites. John Wiley & Sons, New Jersey.
  • Lai, S. M., Yeh, F. C., Wang, Y., Chan, H. C., & Shen, H. F. (2003). Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. Journal of Applied Polymer Science, 87(3), 487-496.
  • Liu, W., Wang, Y. J., & Sun, Z. (2003). Effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on thermal properties, morphology, and tensile properties of low‐density polyethylene (LDPE) and corn starch blends. Journal of Applied Polymer Science, 88(13), 2904-2911.
  • Lu, J. Z., Wu, Q., & Negulescu, I. I. (2005). Wood‐fiber/high‐density‐polyethylene composites: Coupling agent performance. Journal of Applied Polymer Science, 96(1), 93-102.
  • Lu, J. Z., Wu, Q., & McNabb, H. S. (2007). Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood and Fiber Science, 32(1), 88-104.
  • Markarian, J. (2005). Wood-plastic composites: Current trends in materials and processing. Plastics, Additives and Compounding, 7(5), 20-26.
  • Mngomezulu, M. E., John, M. J., Jacobs, V., & Luyt, A. S. (2014). Review on flammability of biofibres and biocomposites. Carbohydrate Polymers, 111, 149-182.
  • Ndiaye, D., Fanton, E., Morlat-Therias, S., Tidjani, A., & Gardette, J. L. (2008). Durability of wood polymer composites: Part 1. Influence of wood on the photochemical properties. Composites Science and Technology, 68(13), 2779-2784.
  • Ndiaye, D., & Tidjani, A. (2012). Effects of coupling agents on thermal behavior and mechanical properties of wood flour/polypropylene composites. Journal of Composite Materials, 46(24), 3067-3075.
  • Nourbakhsh, A., & Ashori, A. (2009). Preparation and properties of wood plastic composites made of recycled high-density polyethylene. Journal of Composite Materials, 43(8), 877-883.
  • Panthapulakkal, S., Zereshkian, A., & Sain, M. (2006). Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresource Technology, 97(2), 265-272.
  • Sain, M., Park, S. H., Suhara, F., & Law, S. (2004). Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2), 363-367.
  • Senesi, N., D'orazio, V., & Ricca, G. (2003). Humic acids in the first generation of EUROSOILS. Geoderma, 116(3), 325-344.
  • Stark, N. M., White, R. H., Mueller, S. A., & Osswald, T. A. (2010). Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polymer Degradation and Stability, 95(9), 1903-1910.
  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons, New Jersey.
  • Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., & Gerzabek, M. H. (2007). FTIR‐spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. Journal of Plant Nutrition and Soil Science, 170(4), 522-529.
  • Wechsler, A., & Hiziroglu, S. (2007). Some of the properties of wood–plastic composites. Building and Environment, 42(7), 2637-2644.
  • Wei, L., McDonald, A. G., Freitag, C., & Morrell, J. J. (2013). Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polymer Degradation and Stability, 98(7), 1348-1361.

Evaluation of potassium humate material in wood-plastic composite production

Yıl 2018, , 189 - 202, 15.09.2018
https://doi.org/10.17475/kastorman.346857

Öz

Aim of study: The aim of the study was to investigate the usability of potassium humate material as an additive to improve some properties of wood-plastic composites.

Area of study: The fire retardancy and mechanic properties of the wood-plastic composites.

Material and Methods: The medium-density fiberboard (MDF) powder and high-density polyethylene (HDPE) granule mixture was pelletized by using a parallel twin-screw extruder. The obtained composite pellets were molded into boards via hot pressing method. Some mechanical, physical, thermal and fire properties of the produced boards were investigated. Moreover, the chemical properties of the composites were analyzed by using Fourier Transform Infrared (FTIR) spectroscopy.

Main results: The results showed that the addition of potassium humate increased the tensile and flexural strengths by 15% and 9%, respectively. However, the water uptake and volumetric swelling of the composite samples increased from 1.15% up to 2.52% and from 3.2% to 5.77%, respectively. LOI and linear burning rate tests indicated that the potassium humate addition increased the fire resistance of composite samples by 3% O2 (LOI) while it improved the burning rate as being 6.62 mm/min lower.

Research highlights: The addition of the potassium humate into the wood-plastic composites enhanced the fire, thermal and mechanical properties of the material to some extent.

Kaynakça

  • Altuntas, E., Yilmaz, E., Salan, T., & Alma, M. H. (2017). Biodegradation properties of wood-plastic composites containing high content of lignocellulosic filler and zinc borate exposed to two different brown-rot fungi. BioResources, 12(4), 7161-7177.
  • Altuntas, E., Narlioglu, N., & Alma, M.H. (2017). Investigation of the fire, thermal, and mechanical properties of zinc borate and synergic fire retardants on composites produced with pp-mdf wastes. BioResources, 12(4), 6971-6983.
  • Çetin, N. S., Özmen, N., Narlıoğlu, N., & Çavuş, V. (2014). Effect of bark flour on the mechanical properties of HDPE composites. Usak University Journal of Material Sciences, 3(1), 23-32.
  • Deka, B. K., & Maji, T. K. (2010). Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite. Composites Science and Technology, 70(12), 1755-1761.
  • Eyheraguibel, B., Silvestre, J., & Morard, P. (2008). Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology, 99(10), 4206-4212.
  • Fabiyi, J. S., McDonald, A. G., Morrell, J. J., & Freitag, C. (2011). Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Composites Part A: Applied Science and Manufacturing, 42(5), 501-510.
  • Félix, J. S., Domeño, C., & Nerín, C. (2013). Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis. Waste Management, 33(3), 645-655.
  • Franco-Marquès, E., Méndez, J. A., Pèlach, M. A., Vilaseca, F., Bayer, J., & Mutjé, P. (2011). Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal, 166(3), 1170-1178.
  • Fu, S., Song, P., Yang, H., Jin, Y., Lu, F., Ye, J., & Wu, Q. (2010). Effects of carbon nanotubes and its functionalization on the thermal and flammability properties of polypropylene/wood flour composites. Journal of Materials Science, 45(13), 3520-3528.
  • Huuhilo, T., Martikka, O., Butylina, S., & Kärki, T. (2010). Mineral fillers for wood–plastic composites. Wood Material Science and Engineering, 5(1), 34-40.
  • Ibach, R. E., & Clemons, C. M. (2006). Effect of acetylated wood flour or coupling agent on moisture, UV, and biological resistance of extruded woodfiber-plastic composites. Wood Protection, 139-147.
  • Khaled, H., & Fawy, H. A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil and Water Research, 6(1), 21-29.
  • Kim, J. K., & Pal, K. (2010). Recent advances in the processing of wood-plastic composites (Vol. 32). Springer Science & Business Media, Berlin.
  • Klyosov, A. A. (2007). Wood-plastic composites. John Wiley & Sons, New Jersey.
  • Lai, S. M., Yeh, F. C., Wang, Y., Chan, H. C., & Shen, H. F. (2003). Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. Journal of Applied Polymer Science, 87(3), 487-496.
  • Liu, W., Wang, Y. J., & Sun, Z. (2003). Effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on thermal properties, morphology, and tensile properties of low‐density polyethylene (LDPE) and corn starch blends. Journal of Applied Polymer Science, 88(13), 2904-2911.
  • Lu, J. Z., Wu, Q., & Negulescu, I. I. (2005). Wood‐fiber/high‐density‐polyethylene composites: Coupling agent performance. Journal of Applied Polymer Science, 96(1), 93-102.
  • Lu, J. Z., Wu, Q., & McNabb, H. S. (2007). Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood and Fiber Science, 32(1), 88-104.
  • Markarian, J. (2005). Wood-plastic composites: Current trends in materials and processing. Plastics, Additives and Compounding, 7(5), 20-26.
  • Mngomezulu, M. E., John, M. J., Jacobs, V., & Luyt, A. S. (2014). Review on flammability of biofibres and biocomposites. Carbohydrate Polymers, 111, 149-182.
  • Ndiaye, D., Fanton, E., Morlat-Therias, S., Tidjani, A., & Gardette, J. L. (2008). Durability of wood polymer composites: Part 1. Influence of wood on the photochemical properties. Composites Science and Technology, 68(13), 2779-2784.
  • Ndiaye, D., & Tidjani, A. (2012). Effects of coupling agents on thermal behavior and mechanical properties of wood flour/polypropylene composites. Journal of Composite Materials, 46(24), 3067-3075.
  • Nourbakhsh, A., & Ashori, A. (2009). Preparation and properties of wood plastic composites made of recycled high-density polyethylene. Journal of Composite Materials, 43(8), 877-883.
  • Panthapulakkal, S., Zereshkian, A., & Sain, M. (2006). Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresource Technology, 97(2), 265-272.
  • Sain, M., Park, S. H., Suhara, F., & Law, S. (2004). Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polymer Degradation and Stability, 83(2), 363-367.
  • Senesi, N., D'orazio, V., & Ricca, G. (2003). Humic acids in the first generation of EUROSOILS. Geoderma, 116(3), 325-344.
  • Stark, N. M., White, R. H., Mueller, S. A., & Osswald, T. A. (2010). Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polymer Degradation and Stability, 95(9), 1903-1910.
  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons, New Jersey.
  • Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G., Mentler, A., & Gerzabek, M. H. (2007). FTIR‐spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. Journal of Plant Nutrition and Soil Science, 170(4), 522-529.
  • Wechsler, A., & Hiziroglu, S. (2007). Some of the properties of wood–plastic composites. Building and Environment, 42(7), 2637-2644.
  • Wei, L., McDonald, A. G., Freitag, C., & Morrell, J. J. (2013). Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polymer Degradation and Stability, 98(7), 1348-1361.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Nasır Narlıoğlu

Tufan Salan

Eyyüp Karaoğul

Mehmet Hakkı Alma Bu kişi benim

Yayımlanma Tarihi 15 Eylül 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Narlıoğlu, N., Salan, T., Karaoğul, E., Alma, M. H. (2018). Evaluation of potassium humate material in wood-plastic composite production. Kastamonu University Journal of Forestry Faculty, 18(2), 189-202. https://doi.org/10.17475/kastorman.346857
AMA Narlıoğlu N, Salan T, Karaoğul E, Alma MH. Evaluation of potassium humate material in wood-plastic composite production. Kastamonu University Journal of Forestry Faculty. Eylül 2018;18(2):189-202. doi:10.17475/kastorman.346857
Chicago Narlıoğlu, Nasır, Tufan Salan, Eyyüp Karaoğul, ve Mehmet Hakkı Alma. “Evaluation of Potassium Humate Material in Wood-Plastic Composite Production”. Kastamonu University Journal of Forestry Faculty 18, sy. 2 (Eylül 2018): 189-202. https://doi.org/10.17475/kastorman.346857.
EndNote Narlıoğlu N, Salan T, Karaoğul E, Alma MH (01 Eylül 2018) Evaluation of potassium humate material in wood-plastic composite production. Kastamonu University Journal of Forestry Faculty 18 2 189–202.
IEEE N. Narlıoğlu, T. Salan, E. Karaoğul, ve M. H. Alma, “Evaluation of potassium humate material in wood-plastic composite production”, Kastamonu University Journal of Forestry Faculty, c. 18, sy. 2, ss. 189–202, 2018, doi: 10.17475/kastorman.346857.
ISNAD Narlıoğlu, Nasır vd. “Evaluation of Potassium Humate Material in Wood-Plastic Composite Production”. Kastamonu University Journal of Forestry Faculty 18/2 (Eylül 2018), 189-202. https://doi.org/10.17475/kastorman.346857.
JAMA Narlıoğlu N, Salan T, Karaoğul E, Alma MH. Evaluation of potassium humate material in wood-plastic composite production. Kastamonu University Journal of Forestry Faculty. 2018;18:189–202.
MLA Narlıoğlu, Nasır vd. “Evaluation of Potassium Humate Material in Wood-Plastic Composite Production”. Kastamonu University Journal of Forestry Faculty, c. 18, sy. 2, 2018, ss. 189-02, doi:10.17475/kastorman.346857.
Vancouver Narlıoğlu N, Salan T, Karaoğul E, Alma MH. Evaluation of potassium humate material in wood-plastic composite production. Kastamonu University Journal of Forestry Faculty. 2018;18(2):189-202.

14178  14179       14165           14166           14167            14168