Araştırma Makalesi
BibTex RIS Kaynak Göster

Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites

Yıl 2018, , 203 - 214, 15.09.2018
https://doi.org/10.17475/kastorman.371198

Öz

Aim of study: In this study, it was aimed to establish and optimize a production process for engineering thermoplastic composites based on heat treated wood fillers and SMA copolymer.

Material and Methods: As wood material, pine wood (Pinus strobus L.), and as a thermoplastic copolymer material, Styrene Maleic Anhydride (SMA) copolymer were used in this study. Heat treatment was conducted at 212°C for 8 h in an attempt to improve the durability of the wood furnish and the wood flour and SMA compounds were extruded and granulated using a lab-scale grinder. Physical test, mechanical test and morphological tests were calculated.

Main results: The results showed that the highest tensile strength was in the 30 wt.% wood flour/SMA and it has been seen that the positive effect on FMOE,TMOE of heat treated wood flour/SMA. Weak interfacial bonding was observed between the polymer and wood filler from the SEM images of the fractured surfaces of wood flour/SMA composites.

Research highlights: The results from this research indicated the compatibility of the SMA copolymer with the wood flour and the changes in the mechanical strength of the material. Due to limited heat treated wood thermoplastic composite usage in the field of wood engineering, there is a need for more extensive work in the future.

Kaynakça

  • A. Espert, F Vilaplana and S. Karlsson, “Comparison of water absorption in natural cellulosic fibers from wood and one year crops in polypropylene composites and its influence on their mechanical”. Composites Part: A, Vol.35, pp1267-1276, 2004. Aydemir, D., Kiziltas, A., Gardner, D. J., Han, Y., Gunduz, G. Morphological characterization of foamed natural filler-reinforced styrene maleic anhydride (SMA) composites. J Porous Mater, 2014a, 21:1059–1067. DOI: 10.1007/s10934-014-9856-x. Aydemir, D., Kiziltas, A., Gardner, D. J., Han, Y., Gunduz, G.. Thermal Analysis of Micro- and Nano Lignocellulosic Reinforced Styrene Maleic Anhydride Composite Foams. International Journal of Polymer Anal. And Charact., 2015a, 20: 231–239, doi: 10.1080/1023666X.2015.1012792. Aydemir, D., Kiziltas, Al., Kiziltas, E. E., Gardner, D.J., Gunduz, G.,. Heat treated wood–nylon 6 composites. Composites: Part B 68,2015, 414–423, http://dx.doi.org/10.1016/j.compositesb.2014.08.040. Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., and Bauchongkol, P. Effect of thermal-treament of wood fibers on properties of flat-pressed wood plastic composites. Polymer Degredation and Stability, 2011, 96,818-822. Bengtsson, M., Baillif, M. Le, Oksman, K.,. Composites Part A, 2007, 38, 1922. Bhaskar, J., Haq, S., Pandey, A. K., Srivastava, N. Evaluation of properties of propylene-pine wood plastic composite, J. Mater. Emviron. Sci. 2012, 3(3):605-612. Butylina S, Martikka O, Karki T. Properties of wood fibre-polypropylene composites: effect of wood fibre source. Appl Compos Mater 2011;18(2):101–11. D.P. Kamdem, A. Pizzi, and A. Jermannaud, Eur. J. Wood Prod., 2002, 60, 1. De Groot, W.F., W.P. Pan, M.D. Rahman and G.N. Richards. 1988. First chemical events in pyrolysis wood. J. Anal. Appl. Pyrolysis 13, 221–231. Du, L., Li, Yç, Lee, S., and Wu, Q 2014. Water absorption bamboo composite Bioresources 9(1):1189-1200. Du, L., Li, Yç, Lee, S., and Wu, Q 2014. Water absorption bamboo composite Bioresources 9(1):1189-1200. Espert, A.; Vilaplana, F.; Karlsson, S. (2004): Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied Science and Manufacturing 35, 1267e1276. Esteves, B., and Pereira, H. M.,. Wood modification by heat treatment: A review, Bioresources, 2009, 4(1), 370-404. Fang H, Wu Q, Hu Y, Wang Y, Yan X. Effects of thermal treatment on durability of short bamboo-fibers and its reinforced composites. Fibers Polym 2013;14(3):436–40. H. N. Dhakal, Z. Y. Zhang and M. O. W. Richardson “Effect of water absorption on the mechanical properties of hemp fiber reinforced unsaturated polyester composites”. Composites Science and Technology, Vol. 6-19, 2007. Han, Y.; Gardner, D. Foamed styrene-based WPC using physical blowing agent created during reactive extrusion, 10th International Conference on Wood and Biofiber Plastic Composites and Cellulose Nanocomposites Symposium, Madison, WI, 2010, May 11–13.. Han. Y., Gardner, D.J. Foamed Styrene-Based WPC using Physical Blowing Agent Created during Reactive Extrusion. In: Proceedings, 10th International Conference on Wood fiber-Plastic Composites, 2009 May; Madison, Wisconsin, USA. Forest Products Society. Hill, C. A. S.. Wood Modification: Chemical, Thermal and Other Processes, John Wiley & Sons Ltd. West Susses, 2006, England. Hosseinaei, O., Wang, S., Enayati A.A. and Rials T.G. (2012) Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43(4):686-694. Kaboorani A, Faezipour M, Ebrahimi G. Feasibility of using heat treated wood in wood/thermoplastic composites. J Reinf Plast Compos 2008;27(16– 17):1689–99. Kaboorani A, Faezipour M. Effects of wood preheat treatment on thermal stability of HDPE composites. J Reinf Plast Compos 2009;28(24):2945–55. Kaboorani A. Thermal properties of composites made of heat-treated wood and polypropylene. J Compos Mater 2009;43(22):2599–607. Kishi, H,. Yoshioka, M., Yamanoi, A., Shiraishi, N.,. Composites of wood and polypropylenes. I. Mokuzai Gakkaishi, 1988, 43(2):133-139. Kord, B. The Impact of Plastics Virginity on Water Absorption and Thickness Swelling of Wood Plastic Composites. World Applied Sciences Journal, 2012, 17(2):168-171. Lu, J.Z.; Negulescu, I.L.; Wu, Q. Maleated wood-fiber=high density polyethylene composites: coupling mechanisms and interfacial characterization. Compos. Interf. 2005, 12 (1), 125–140. Luo S, Cao J, Wang X. Investigation of the interfacial compatibility of PEG and thermally modified wood flour/polypropylene composites using the stress relaxation approach. Bioresources 2013;8(2):2064–73. Luo, S., Cao, J., Peng, Y. Properties of glycerin-thermally modified wood flour/polypropylene composites. Polymer Composites, 2014, 35(2), 201-207. DOI: 10.1002/pc.22651. M.G. Marcos and M.D.C. Hale, The effect of chemical changes on the wood-moisture relationships in thermally modified wood, 2009, IRG/WP09–40473. Matuana L.M., Park C.B., Balatinecz J.J., Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites, Polymer Engineering & Science., 38, 1862-1872 (1998). Mohebby, B., Ilbeighi, F., and Najafi, S. K. Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF), Holz Roh-Und Werkstoff, 2008, 66(3), 213-218. N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, and P. Bauchongkol, Polym. Degrad. Stab., 2011, 96, 818. () Najafi, S.K.; Kiaefar, A.; Hamidina, E.; Tajvidi, M. (2007a): Water Absorption Behavior of Composites from Sawdust and Recycled Plastics. J Reinf Plastics Compos 26(3):341–348. Najafi, S.K.; Kiaefar, A.; Tajvidi, M. (2008): Effect of Bark Flour Content on Hygroscopic Characteristics of Wood-Polypropylene.. J Appl Polym Sci 110(5):3116–3120. Najafi, S.K.; Tajvidi, M.; Hamidina, E. (2007b): Effect of temperature, plastic type and virginity on the water uptake of sawdust/plastic composites. Holz Als Roh-Und Werkstoff 65(5):377–382. Nebesarova, I.. Etude d’un procédé de traitement pour l’association bois-polymère. Ph.D, EMSE, 1996, France. Pelaez-Samaniego, M.P., Yadama, V., Lowell, E., Amidon, T.E., Chaffee, T.L. (2013) Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung, 67(2): 193-200. R.A. Lafia-Araga, A. Hassan, R. Yahya, N.A. Rahman, P.R. Hornsby, and J. Heidarian, J. Reinf. Plast. Comp., 2012, 31, 215. Robin, J.J. and Breton, Y. Reinforcement of Recycled Polyethylene with Wood Fibers Heat Treated. Journal of Reinforced Plastics and Composites, 2001, Vol. 20, No. 14/2001. DOI: 10.1106/JGKV-EDG4-WYEW-1TT6. Ross, Robert J. Wood handbook: wood as an engineering material.2010. Rowel, R.M. (2007) Chemical modification of wood. In: Handbook of Engineering Biopolymers Homopolymers, Blends and Composites. Eds. Fakirov, S., Bhattacharyya, D. Carl Hanser Verlag, Munich. pp. 673-691 Rull, N.; Ollier, R.P.; Francucci, G.; Rodriguez, E.S. and Alvarez, V.A. (2014): Effect of the addition of nanoclays on the water absorption and mechanical properties of glass fiber/up resin composites. Journal of Composite Materials, 2014, doi: 10.1177/0021998314538869. S. H. Ahmad, N. N. Bonnia, I. Zainol, A. A. Mamun and A. K. Bledzki “Polyester-kenaf composites: effects of alkali fiber treatment and toughening of matrix using liquid natural rubber”. J of Composites Materials, Vol.0, No.00, 2010. Segerholm BK, Ibach RE, Westin M. Moisture sorption, biological durability, and mechanical performance of WPC containing modified wood and polylactates. Bioresources 2012;7(4):4575–85. Segerholm K. Wood plastic composites made from modified wood-aspects on moisture sorption, micromorphology and durability. Licentiate Thesis, KTH, Royal Institute of Technology, Stockholm, Sweden; 2007. Shen, C.H. and Springer, G. S. (1976): J. Composite Materials,10:2-20. Shi, S.Q.; Gardner, D.J. (2005): Compos A Appl Sci Manuf 37(9):1276–1285. Simonsen, J., R. Jacobsen, and R. Rowell. Properties of styrene-maleic anhydride copolymers containing wood-based fillers. Forest Prod. J. 1998, 48:89–92. Skaar, C. Water in Wood. 1st edition. Syracuse University Press, Syracuse, NY, 1972 Stamboulis A, Baillie CA, Garkhail SK, van Melick HGH, Peijs. Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater 2000;7(5–6):273–94 Tajvidi, M.; Haghdan, S.; Najafi, S.K. (2008): Physical Properties of Novel Layered Composites of Wood Flour and PVC. J Reinf Plastics Compos 27(16–17):1759–1765. Tajvidi, M.; Najafi, S.K.; Moteei, N. (2006): Long term water uptake behavior of natural fiber/polypropylene composites, J Appl Polym Sci 99(5):2199–2203 Takase, S., Shiraishi, N., Studies on composites and polypropylenes, II. J. of Applied Polymer Sci. 1989, 37:645-659. Tufan, M. Gulec, T., Pesman, E., and Ayrilmis, N. Technological and Thermal Properties of Thermoplastic Composites Filled with Heat-treated Alder Wood. BioResources, 2016, 11(2), 3153-3164. V.M. Tuong and J. Li, Bioresources, 2010, 5, 1257. Wolcott, M. P. Forest Journal, 2003, 53, 25 Woodhams, R. T., Thomas, G., Rodgers, D. D. Wood fibers as reinforcing fillers for polyolefins. Polymer Engineering and Sci. 1984, 24(15):1116-1171. Yam, K., Gogoi, B., Lai, C., Selke, S.,. Composites from compounding wood fibers with recycled high density polyethylene. Polymer Engineering and Science, 1990, 30(11):693-699. Zor, M., Tankut, N., Kızıltaş, A., Gardner, D. J., Yazıcı, H., (2016). Feasibility of Using Foamed Styrene Maleic Anhydride (SMA) Co-polymer in Wood Based Composites, Drvna Industrija, 67 (4) 399-407 (2016).

Isıl işlem odun dolgulu stiren maleik anhidrit kopolimer kompozitleri

Yıl 2018, , 203 - 214, 15.09.2018
https://doi.org/10.17475/kastorman.371198

Öz

Çalışmanın amacı: Bu çalışmada, ısıl işlem odun dolguları ve SMA kompozitleri temelli mühendislik termoplastiklerinin üretim proseslerinin optimizasyonun belirlenmesi amaçlanmaktadır.

Materyal ve Yöntem: Ahşap malzeme olarak veymut çamı, termoplastik kopolimer olarak stiren maleik anhidrit çalışmada kullanılmıştır. Odun donatısının kararlılığını iyileştirmek için 8 saatlik 212°C 'de ısıl işlem metodu uygulandı ve SMA ile odun bileşenleri laboratuvar tipi öğütücüler kullanılarak kalıptan geçirildi. Fiziksel, mekanik ve morfolojik testler ölçüldü.

Sonuçlar: Yapılan çalışmalar sonucu en yüksek çekme direnç değeri %30 odun SMA grubunda ve ısıl işlemli odun unu SMA grubunun eğilmede ve çekmede elastikiyet modülü üzerine pozitif etkisi görülmüştür. Odun unu SMA grubunun kırılmış yüzey SEM görüntülerinden odun dolgusu ile polimer arasında zayıf arayüz bağları gözlemlenmiştir.

Araştırma vurguları: Bu araştırmanın sonuçları, mühendislik malzemesi olan SMA kopolimerinin odun unu ile uyumu ve malzemenin mekanik mukavemetindeki değişiklikleri göstermektedir. Ahşap mühendisliği alanında sınırlı ısıl işlemli odun termoplastik kompozit kullanımı nedeniyle gelecekte daha kapsamlı çalışmalara ihtiyaç vardır.

Kaynakça

  • A. Espert, F Vilaplana and S. Karlsson, “Comparison of water absorption in natural cellulosic fibers from wood and one year crops in polypropylene composites and its influence on their mechanical”. Composites Part: A, Vol.35, pp1267-1276, 2004. Aydemir, D., Kiziltas, A., Gardner, D. J., Han, Y., Gunduz, G. Morphological characterization of foamed natural filler-reinforced styrene maleic anhydride (SMA) composites. J Porous Mater, 2014a, 21:1059–1067. DOI: 10.1007/s10934-014-9856-x. Aydemir, D., Kiziltas, A., Gardner, D. J., Han, Y., Gunduz, G.. Thermal Analysis of Micro- and Nano Lignocellulosic Reinforced Styrene Maleic Anhydride Composite Foams. International Journal of Polymer Anal. And Charact., 2015a, 20: 231–239, doi: 10.1080/1023666X.2015.1012792. Aydemir, D., Kiziltas, Al., Kiziltas, E. E., Gardner, D.J., Gunduz, G.,. Heat treated wood–nylon 6 composites. Composites: Part B 68,2015, 414–423, http://dx.doi.org/10.1016/j.compositesb.2014.08.040. Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., and Bauchongkol, P. Effect of thermal-treament of wood fibers on properties of flat-pressed wood plastic composites. Polymer Degredation and Stability, 2011, 96,818-822. Bengtsson, M., Baillif, M. Le, Oksman, K.,. Composites Part A, 2007, 38, 1922. Bhaskar, J., Haq, S., Pandey, A. K., Srivastava, N. Evaluation of properties of propylene-pine wood plastic composite, J. Mater. Emviron. Sci. 2012, 3(3):605-612. Butylina S, Martikka O, Karki T. Properties of wood fibre-polypropylene composites: effect of wood fibre source. Appl Compos Mater 2011;18(2):101–11. D.P. Kamdem, A. Pizzi, and A. Jermannaud, Eur. J. Wood Prod., 2002, 60, 1. De Groot, W.F., W.P. Pan, M.D. Rahman and G.N. Richards. 1988. First chemical events in pyrolysis wood. J. Anal. Appl. Pyrolysis 13, 221–231. Du, L., Li, Yç, Lee, S., and Wu, Q 2014. Water absorption bamboo composite Bioresources 9(1):1189-1200. Du, L., Li, Yç, Lee, S., and Wu, Q 2014. Water absorption bamboo composite Bioresources 9(1):1189-1200. Espert, A.; Vilaplana, F.; Karlsson, S. (2004): Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied Science and Manufacturing 35, 1267e1276. Esteves, B., and Pereira, H. M.,. Wood modification by heat treatment: A review, Bioresources, 2009, 4(1), 370-404. Fang H, Wu Q, Hu Y, Wang Y, Yan X. Effects of thermal treatment on durability of short bamboo-fibers and its reinforced composites. Fibers Polym 2013;14(3):436–40. H. N. Dhakal, Z. Y. Zhang and M. O. W. Richardson “Effect of water absorption on the mechanical properties of hemp fiber reinforced unsaturated polyester composites”. Composites Science and Technology, Vol. 6-19, 2007. Han, Y.; Gardner, D. Foamed styrene-based WPC using physical blowing agent created during reactive extrusion, 10th International Conference on Wood and Biofiber Plastic Composites and Cellulose Nanocomposites Symposium, Madison, WI, 2010, May 11–13.. Han. Y., Gardner, D.J. Foamed Styrene-Based WPC using Physical Blowing Agent Created during Reactive Extrusion. In: Proceedings, 10th International Conference on Wood fiber-Plastic Composites, 2009 May; Madison, Wisconsin, USA. Forest Products Society. Hill, C. A. S.. Wood Modification: Chemical, Thermal and Other Processes, John Wiley & Sons Ltd. West Susses, 2006, England. Hosseinaei, O., Wang, S., Enayati A.A. and Rials T.G. (2012) Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Composites Part A: Applied Science and Manufacturing, 43(4):686-694. Kaboorani A, Faezipour M, Ebrahimi G. Feasibility of using heat treated wood in wood/thermoplastic composites. J Reinf Plast Compos 2008;27(16– 17):1689–99. Kaboorani A, Faezipour M. Effects of wood preheat treatment on thermal stability of HDPE composites. J Reinf Plast Compos 2009;28(24):2945–55. Kaboorani A. Thermal properties of composites made of heat-treated wood and polypropylene. J Compos Mater 2009;43(22):2599–607. Kishi, H,. Yoshioka, M., Yamanoi, A., Shiraishi, N.,. Composites of wood and polypropylenes. I. Mokuzai Gakkaishi, 1988, 43(2):133-139. Kord, B. The Impact of Plastics Virginity on Water Absorption and Thickness Swelling of Wood Plastic Composites. World Applied Sciences Journal, 2012, 17(2):168-171. Lu, J.Z.; Negulescu, I.L.; Wu, Q. Maleated wood-fiber=high density polyethylene composites: coupling mechanisms and interfacial characterization. Compos. Interf. 2005, 12 (1), 125–140. Luo S, Cao J, Wang X. Investigation of the interfacial compatibility of PEG and thermally modified wood flour/polypropylene composites using the stress relaxation approach. Bioresources 2013;8(2):2064–73. Luo, S., Cao, J., Peng, Y. Properties of glycerin-thermally modified wood flour/polypropylene composites. Polymer Composites, 2014, 35(2), 201-207. DOI: 10.1002/pc.22651. M.G. Marcos and M.D.C. Hale, The effect of chemical changes on the wood-moisture relationships in thermally modified wood, 2009, IRG/WP09–40473. Matuana L.M., Park C.B., Balatinecz J.J., Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites, Polymer Engineering & Science., 38, 1862-1872 (1998). Mohebby, B., Ilbeighi, F., and Najafi, S. K. Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF), Holz Roh-Und Werkstoff, 2008, 66(3), 213-218. N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, and P. Bauchongkol, Polym. Degrad. Stab., 2011, 96, 818. () Najafi, S.K.; Kiaefar, A.; Hamidina, E.; Tajvidi, M. (2007a): Water Absorption Behavior of Composites from Sawdust and Recycled Plastics. J Reinf Plastics Compos 26(3):341–348. Najafi, S.K.; Kiaefar, A.; Tajvidi, M. (2008): Effect of Bark Flour Content on Hygroscopic Characteristics of Wood-Polypropylene.. J Appl Polym Sci 110(5):3116–3120. Najafi, S.K.; Tajvidi, M.; Hamidina, E. (2007b): Effect of temperature, plastic type and virginity on the water uptake of sawdust/plastic composites. Holz Als Roh-Und Werkstoff 65(5):377–382. Nebesarova, I.. Etude d’un procédé de traitement pour l’association bois-polymère. Ph.D, EMSE, 1996, France. Pelaez-Samaniego, M.P., Yadama, V., Lowell, E., Amidon, T.E., Chaffee, T.L. (2013) Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung, 67(2): 193-200. R.A. Lafia-Araga, A. Hassan, R. Yahya, N.A. Rahman, P.R. Hornsby, and J. Heidarian, J. Reinf. Plast. Comp., 2012, 31, 215. Robin, J.J. and Breton, Y. Reinforcement of Recycled Polyethylene with Wood Fibers Heat Treated. Journal of Reinforced Plastics and Composites, 2001, Vol. 20, No. 14/2001. DOI: 10.1106/JGKV-EDG4-WYEW-1TT6. Ross, Robert J. Wood handbook: wood as an engineering material.2010. Rowel, R.M. (2007) Chemical modification of wood. In: Handbook of Engineering Biopolymers Homopolymers, Blends and Composites. Eds. Fakirov, S., Bhattacharyya, D. Carl Hanser Verlag, Munich. pp. 673-691 Rull, N.; Ollier, R.P.; Francucci, G.; Rodriguez, E.S. and Alvarez, V.A. (2014): Effect of the addition of nanoclays on the water absorption and mechanical properties of glass fiber/up resin composites. Journal of Composite Materials, 2014, doi: 10.1177/0021998314538869. S. H. Ahmad, N. N. Bonnia, I. Zainol, A. A. Mamun and A. K. Bledzki “Polyester-kenaf composites: effects of alkali fiber treatment and toughening of matrix using liquid natural rubber”. J of Composites Materials, Vol.0, No.00, 2010. Segerholm BK, Ibach RE, Westin M. Moisture sorption, biological durability, and mechanical performance of WPC containing modified wood and polylactates. Bioresources 2012;7(4):4575–85. Segerholm K. Wood plastic composites made from modified wood-aspects on moisture sorption, micromorphology and durability. Licentiate Thesis, KTH, Royal Institute of Technology, Stockholm, Sweden; 2007. Shen, C.H. and Springer, G. S. (1976): J. Composite Materials,10:2-20. Shi, S.Q.; Gardner, D.J. (2005): Compos A Appl Sci Manuf 37(9):1276–1285. Simonsen, J., R. Jacobsen, and R. Rowell. Properties of styrene-maleic anhydride copolymers containing wood-based fillers. Forest Prod. J. 1998, 48:89–92. Skaar, C. Water in Wood. 1st edition. Syracuse University Press, Syracuse, NY, 1972 Stamboulis A, Baillie CA, Garkhail SK, van Melick HGH, Peijs. Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater 2000;7(5–6):273–94 Tajvidi, M.; Haghdan, S.; Najafi, S.K. (2008): Physical Properties of Novel Layered Composites of Wood Flour and PVC. J Reinf Plastics Compos 27(16–17):1759–1765. Tajvidi, M.; Najafi, S.K.; Moteei, N. (2006): Long term water uptake behavior of natural fiber/polypropylene composites, J Appl Polym Sci 99(5):2199–2203 Takase, S., Shiraishi, N., Studies on composites and polypropylenes, II. J. of Applied Polymer Sci. 1989, 37:645-659. Tufan, M. Gulec, T., Pesman, E., and Ayrilmis, N. Technological and Thermal Properties of Thermoplastic Composites Filled with Heat-treated Alder Wood. BioResources, 2016, 11(2), 3153-3164. V.M. Tuong and J. Li, Bioresources, 2010, 5, 1257. Wolcott, M. P. Forest Journal, 2003, 53, 25 Woodhams, R. T., Thomas, G., Rodgers, D. D. Wood fibers as reinforcing fillers for polyolefins. Polymer Engineering and Sci. 1984, 24(15):1116-1171. Yam, K., Gogoi, B., Lai, C., Selke, S.,. Composites from compounding wood fibers with recycled high density polyethylene. Polymer Engineering and Science, 1990, 30(11):693-699. Zor, M., Tankut, N., Kızıltaş, A., Gardner, D. J., Yazıcı, H., (2016). Feasibility of Using Foamed Styrene Maleic Anhydride (SMA) Co-polymer in Wood Based Composites, Drvna Industrija, 67 (4) 399-407 (2016).
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Mustafa Zor

Alper Kızıltas Bu kişi benim

Lu Wang Bu kişi benim

Douglas J. Gardner Bu kişi benim

Yayımlanma Tarihi 15 Eylül 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Zor, M., Kızıltas, A., Wang, L., Gardner, D. J. (2018). Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites. Kastamonu University Journal of Forestry Faculty, 18(2), 203-214. https://doi.org/10.17475/kastorman.371198
AMA Zor M, Kızıltas A, Wang L, Gardner DJ. Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites. Kastamonu University Journal of Forestry Faculty. Eylül 2018;18(2):203-214. doi:10.17475/kastorman.371198
Chicago Zor, Mustafa, Alper Kızıltas, Lu Wang, ve Douglas J. Gardner. “Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites”. Kastamonu University Journal of Forestry Faculty 18, sy. 2 (Eylül 2018): 203-14. https://doi.org/10.17475/kastorman.371198.
EndNote Zor M, Kızıltas A, Wang L, Gardner DJ (01 Eylül 2018) Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites. Kastamonu University Journal of Forestry Faculty 18 2 203–214.
IEEE M. Zor, A. Kızıltas, L. Wang, ve D. J. Gardner, “Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites”, Kastamonu University Journal of Forestry Faculty, c. 18, sy. 2, ss. 203–214, 2018, doi: 10.17475/kastorman.371198.
ISNAD Zor, Mustafa vd. “Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites”. Kastamonu University Journal of Forestry Faculty 18/2 (Eylül 2018), 203-214. https://doi.org/10.17475/kastorman.371198.
JAMA Zor M, Kızıltas A, Wang L, Gardner DJ. Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites. Kastamonu University Journal of Forestry Faculty. 2018;18:203–214.
MLA Zor, Mustafa vd. “Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites”. Kastamonu University Journal of Forestry Faculty, c. 18, sy. 2, 2018, ss. 203-14, doi:10.17475/kastorman.371198.
Vancouver Zor M, Kızıltas A, Wang L, Gardner DJ. Heat Treated Wood-Filled Styrene Maleic Anhydride (SMA) Copolymer Composites. Kastamonu University Journal of Forestry Faculty. 2018;18(2):203-14.

14178  14179       14165           14166           14167            14168