Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Ağaç Türlerinin Ses İletim Kaybının Deneysel Olarak Belirlenmesi

Yıl 2020, , 190 - 199, 29.09.2020
https://doi.org/10.17475/kastorman.801786

Öz

Çalışmanın amacı: farklı yoğunluğa sahip 16 farklı ağaç türünün 100-1000 Hz frekans aralığında ses iletim kaybı değerleri ile yoğunluk arasındaki ilişkinin belirlemektir.
Materyal ve yöntem: Bu çalışmada Dişbudak (Fraxinus excelsior), Akasya (Robinia pseudoacacia L.), Huş (Betula pendula), Karaçam (Pinus nigra), Kara kavak (Populus nigra), Kanada kavağı (Populus x euramaricana), Kestane (Castanea sativa) Mill.), Selvi (Cupressus sempervirens), Doğu kayını (Fagus orientalis Lips,) Okaliptüs C. (Eucalyptus camaldulensis Dehnh), Okaliptüs G. (Eucalyptus grandis), Ardıç (Juniperus excelsa), Doğu Çınarı (Platanus orientalis L.), Sarıçam (Pinus sylvetris L), Türk Kızılçamı (Pinus brutia Ten.) ve Beyaz Meşe (Quercus alba) odunlarının ses iletim kaybı değerleri empedans tüp düzeneğinde belirlenmiştir.
Temel sonuçlar: Frekans arttığında, daha düşük yoğunluğa sahip ağaç malzeme türlerinde yüksek ses iletim kaybı gözlendiğini belirlenmiştir. Ancak, ortalama ses iletim kaybı ile yoğunluk arasında net bir ilişki belirlenmemiştir.
Araştırma vurguları: ağaç malzemenin frekansa bağlı akustik performans parametrelerinin belirlenmesi ve yoğunluk ile ilişkisinin tespit edilmesi önemlidir.

Kaynakça

  • ASTM Standard E1050-12. (2012). Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system, ASTM International : West Conshohocken, PA, USA,
  • ASTM E2611-17. (2017). Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method 1 ; ASTM International : West Conshohocken, PA, USA,
  • ASTM C423-09. (2009). Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, ASTM International : West Conshohocken, PA, USA,
  • ASTM E2249-19. (2003). Standard Test Method for Laboratory Measurement of Airborne Transmission Loss of Building Partitions and Elements Using Sound Intensity, ASTM International: West Conshohocken, PA, USA,
  • Bal, B. C. & Bektaş, İ. (2018). Odunun yoğunluğu ile mekanik özellikleri arasındaki ilişkinin belirlenmesi üzerine bir araştırma. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 1(2), 51-6.
  • Berkel, A., (1970). Ağaç malzeme teknolojisi, İstanbul üniversitesi, Orman fakültesi yayınları, İstanbul.
  • Bies, D. A. & Hansen, C. H. (2009). Engineering noise control: Theory and practice, fourth edition. In Engineering Noise Control: Theory and Practice, (4th ed.). Spon Press/Taylor & Francis.
  • Bucur, V. (2006). Acoustics of wood, 2nd ed. Springer Series in Wood Science, Springer, Berlin, Heidelberg, Germany.
  • Chauan, S., Entwistle, K.M. & Walker, J.C.F. (2005). Differences in acoustic velocity by resonance and transit-time methods in an anisotropic laminated wood medium. Holzforschung, 59,428-434.
  • Chang, L., W. U. & Zhihui, W.U. (2011). Study on sound absorption performance of extruded tubular particleboard used in indoor wooden products, Journal of Nanjing Forestry University, 35(2), 56-60.
  • Crocker, M. J. (2007). Handbook of noise and vibration control. New Jersey, John Wiley.
  • Çavuş, V. (2019). Mühendislik Ürünü Ağaç Malzemelerde Yükselen Trend ; Çapraz Tabakalanmış Kereste. Bartın Orman Fakültesi Dergisi, 21 (2), 560-569.
  • Davern, W. A. (1977). Perforated facings backed with porous materials as sound absorbers an experimental study. Applied Acoustics, 10, 85-122.
  • Fukuta, S., Nishizawa, M. & Takasu, Y. (2012). Sound absorption and form retention of newly developed heat-insulating/acoustic material. Eur. J. Wood Prod. 70, 697–704 https://doi.org/10.1007/s00107-012-0607-x
  • Godshall, D. & Davis, J.H. (1969). Acoustical Absorption Properties of Wood-Base Panel Materials. Research Paper FPL 104. USDA, Forest Service, Forest Products Laboratory USA.
  • Kang, C., Matsumura, J. & Oda, K. (2006). A comparison of the standing wave and two microphone methods in measuring the sound absorption coefficient of wood. J. Fac. Agr. Kyushu Univ., 51 (1), 1-4.
  • Kang, C.W., Kim, G.-C., Park, H. J., Lee, N.–H., Kang, W., & Matsumura, J. (2010). Changes in permeability and sound absorption capability of yellow poplar wood by steam explosion treatment. Kyushu University Journal of the Faculty of Agriculture, 55(2), 327-332.
  • Li, X., Liang, S., Wu, N. J. & Chang, Y.Y. (2010). Experimental study on sound insulation characteristics of embedded co-cured composite damping structures. Noise and Vibration Control, 10(5), 91-94.
  • Lung, T.Y. & Doige, A.G. (1983). A time averaging transient testing method for acoustic properties of piping systems and mufflers with flow. J. Acoust. Soc. Am. 73, 867–876. doi:10.1121/1.389056.
  • Mohebby, B., Yaghoubi, K. & Roohnia, M. (2007). Acoustic properties of hydrothermally modified mulberry (Morus alba L.) wood. The Third European Conference on Wood Modification, Eds. Hill, C.A.S., Jones, D., Militz, H., Ormondroyd, G.A.The Angel Hotel, Cardiff, UK, 15-16 October 2007.
  • Munjal, M.L. & Doige, A.G., (1990). Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element. J. Sound Vib., 141,323-333. doi:10.1016/0022-460X(90)90843-O.
  • Selmani, M. & Sönmez, A. (2017). İç Dekorasyonda Kullanılan Sapsız Meşe (Quercus Petraea L.) ve Sarıçam (Pınus Sylvestrıs L.) Ağaçlarında Kesiş Yönü Ve Su Bazlı Vernik Türünün Ses Geçiş Kaybına Etkisi. İleri Teknoloji Bilimleri Dergisi, 6 (3), 338-344.
  • Smardzewski, J., Batko, W., Kamisi ń ski, T., Flach, A., Pilch, A., Dziurka, D., Mirski, R., Roszyk, E., Majewski, A. (2014) Experimental study of wood acoustic absorption characteristics. Holzforschung 68:467 – 476.
  • Sirel, Ş., 2000. Yapı Akustiğinde 30 Terim 30 Tanım. Yapı Fiziği Uzmanlık Enstitüsü, 9, İstanbul.
  • TS 2470, (1976). Odunda Fiziksel ve Mekaniksel Deneyler İçin Numune Alma Metodları ve Genel Özellikler, T.S.E., Ankara 2-4
  • TS 2472, (1976). Odunda, fiziksel ve mekaniksel deneyler için birim hacim ağırlığı tayini, Türk Standartları Enstitüsü, Ankara.
  • Voichita, B. (1995). The Acoustics of Wood, 1st edition, Boca Raton, CRC Press, 300 Pages, https://doi.org/10.1201/978020371012 Watanabe, H., Matsumoto, T., Kinoshita, N. & Hayashi, H. (1967) Acoustical study of woods and wood products. I. On the normal absorption coefficient of wood. Mokuzai Gakkaishi, 13(5), 117-182.

Experimental Determination of Sound Transmission Loss of Some Wood Species

Yıl 2020, , 190 - 199, 29.09.2020
https://doi.org/10.17475/kastorman.801786

Öz

Aim of study: To determine the sound transmission losses of 16 different wood species with the different density in the range of 100-1000 Hz frequencies, and the relationship between density and transmission loss was.
Material and methods: In this study sound transmission loss values of Ash (Fraxinus excelsior), Acacia (Robinia pseudoacacia L.), Beech (Betula pendula), Black pine (Pinus nigra), Black poplar (Populus nigra), Canadian poplar (Populus x euramaricana), Chestnut (Castanea sativa Mill.), Cypress (Cupressus sempervirens), Oriental beech (Fagus orientalis Lips,) Eucalyptus C. (E, camaldulensis Dehnh), Eucalyptus G. (Eucalyptus grandis), Juniper (Juniperus excelsa), Plane (Platanus orientalis L.), Scotch pine (Pinus sylvetris L), Turkish Red pine (Pinus brutia Ten) and White Oak (Quercus alba) wood specimens were determined by using the impedance tube kit.
Main results: Sound transmission loss is observed in lower density wood material species with the increasing frequency. However, a clear relationship has not been established between the mean sound transmission loss and density.
Highlights: It is important to determine the frequency-related acoustic performance parameters of the wood material and to its relationship with density.

Kaynakça

  • ASTM Standard E1050-12. (2012). Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system, ASTM International : West Conshohocken, PA, USA,
  • ASTM E2611-17. (2017). Standard Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method 1 ; ASTM International : West Conshohocken, PA, USA,
  • ASTM C423-09. (2009). Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, ASTM International : West Conshohocken, PA, USA,
  • ASTM E2249-19. (2003). Standard Test Method for Laboratory Measurement of Airborne Transmission Loss of Building Partitions and Elements Using Sound Intensity, ASTM International: West Conshohocken, PA, USA,
  • Bal, B. C. & Bektaş, İ. (2018). Odunun yoğunluğu ile mekanik özellikleri arasındaki ilişkinin belirlenmesi üzerine bir araştırma. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 1(2), 51-6.
  • Berkel, A., (1970). Ağaç malzeme teknolojisi, İstanbul üniversitesi, Orman fakültesi yayınları, İstanbul.
  • Bies, D. A. & Hansen, C. H. (2009). Engineering noise control: Theory and practice, fourth edition. In Engineering Noise Control: Theory and Practice, (4th ed.). Spon Press/Taylor & Francis.
  • Bucur, V. (2006). Acoustics of wood, 2nd ed. Springer Series in Wood Science, Springer, Berlin, Heidelberg, Germany.
  • Chauan, S., Entwistle, K.M. & Walker, J.C.F. (2005). Differences in acoustic velocity by resonance and transit-time methods in an anisotropic laminated wood medium. Holzforschung, 59,428-434.
  • Chang, L., W. U. & Zhihui, W.U. (2011). Study on sound absorption performance of extruded tubular particleboard used in indoor wooden products, Journal of Nanjing Forestry University, 35(2), 56-60.
  • Crocker, M. J. (2007). Handbook of noise and vibration control. New Jersey, John Wiley.
  • Çavuş, V. (2019). Mühendislik Ürünü Ağaç Malzemelerde Yükselen Trend ; Çapraz Tabakalanmış Kereste. Bartın Orman Fakültesi Dergisi, 21 (2), 560-569.
  • Davern, W. A. (1977). Perforated facings backed with porous materials as sound absorbers an experimental study. Applied Acoustics, 10, 85-122.
  • Fukuta, S., Nishizawa, M. & Takasu, Y. (2012). Sound absorption and form retention of newly developed heat-insulating/acoustic material. Eur. J. Wood Prod. 70, 697–704 https://doi.org/10.1007/s00107-012-0607-x
  • Godshall, D. & Davis, J.H. (1969). Acoustical Absorption Properties of Wood-Base Panel Materials. Research Paper FPL 104. USDA, Forest Service, Forest Products Laboratory USA.
  • Kang, C., Matsumura, J. & Oda, K. (2006). A comparison of the standing wave and two microphone methods in measuring the sound absorption coefficient of wood. J. Fac. Agr. Kyushu Univ., 51 (1), 1-4.
  • Kang, C.W., Kim, G.-C., Park, H. J., Lee, N.–H., Kang, W., & Matsumura, J. (2010). Changes in permeability and sound absorption capability of yellow poplar wood by steam explosion treatment. Kyushu University Journal of the Faculty of Agriculture, 55(2), 327-332.
  • Li, X., Liang, S., Wu, N. J. & Chang, Y.Y. (2010). Experimental study on sound insulation characteristics of embedded co-cured composite damping structures. Noise and Vibration Control, 10(5), 91-94.
  • Lung, T.Y. & Doige, A.G. (1983). A time averaging transient testing method for acoustic properties of piping systems and mufflers with flow. J. Acoust. Soc. Am. 73, 867–876. doi:10.1121/1.389056.
  • Mohebby, B., Yaghoubi, K. & Roohnia, M. (2007). Acoustic properties of hydrothermally modified mulberry (Morus alba L.) wood. The Third European Conference on Wood Modification, Eds. Hill, C.A.S., Jones, D., Militz, H., Ormondroyd, G.A.The Angel Hotel, Cardiff, UK, 15-16 October 2007.
  • Munjal, M.L. & Doige, A.G., (1990). Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element. J. Sound Vib., 141,323-333. doi:10.1016/0022-460X(90)90843-O.
  • Selmani, M. & Sönmez, A. (2017). İç Dekorasyonda Kullanılan Sapsız Meşe (Quercus Petraea L.) ve Sarıçam (Pınus Sylvestrıs L.) Ağaçlarında Kesiş Yönü Ve Su Bazlı Vernik Türünün Ses Geçiş Kaybına Etkisi. İleri Teknoloji Bilimleri Dergisi, 6 (3), 338-344.
  • Smardzewski, J., Batko, W., Kamisi ń ski, T., Flach, A., Pilch, A., Dziurka, D., Mirski, R., Roszyk, E., Majewski, A. (2014) Experimental study of wood acoustic absorption characteristics. Holzforschung 68:467 – 476.
  • Sirel, Ş., 2000. Yapı Akustiğinde 30 Terim 30 Tanım. Yapı Fiziği Uzmanlık Enstitüsü, 9, İstanbul.
  • TS 2470, (1976). Odunda Fiziksel ve Mekaniksel Deneyler İçin Numune Alma Metodları ve Genel Özellikler, T.S.E., Ankara 2-4
  • TS 2472, (1976). Odunda, fiziksel ve mekaniksel deneyler için birim hacim ağırlığı tayini, Türk Standartları Enstitüsü, Ankara.
  • Voichita, B. (1995). The Acoustics of Wood, 1st edition, Boca Raton, CRC Press, 300 Pages, https://doi.org/10.1201/978020371012 Watanabe, H., Matsumoto, T., Kinoshita, N. & Hayashi, H. (1967) Acoustical study of woods and wood products. I. On the normal absorption coefficient of wood. Mokuzai Gakkaishi, 13(5), 117-182.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Vedat Çavuş

Murat Kara

Yayımlanma Tarihi 29 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Çavuş, V., & Kara, M. (2020). Experimental Determination of Sound Transmission Loss of Some Wood Species. Kastamonu University Journal of Forestry Faculty, 20(2), 190-199. https://doi.org/10.17475/kastorman.801786
AMA Çavuş V, Kara M. Experimental Determination of Sound Transmission Loss of Some Wood Species. Kastamonu University Journal of Forestry Faculty. Eylül 2020;20(2):190-199. doi:10.17475/kastorman.801786
Chicago Çavuş, Vedat, ve Murat Kara. “Experimental Determination of Sound Transmission Loss of Some Wood Species”. Kastamonu University Journal of Forestry Faculty 20, sy. 2 (Eylül 2020): 190-99. https://doi.org/10.17475/kastorman.801786.
EndNote Çavuş V, Kara M (01 Eylül 2020) Experimental Determination of Sound Transmission Loss of Some Wood Species. Kastamonu University Journal of Forestry Faculty 20 2 190–199.
IEEE V. Çavuş ve M. Kara, “Experimental Determination of Sound Transmission Loss of Some Wood Species”, Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, ss. 190–199, 2020, doi: 10.17475/kastorman.801786.
ISNAD Çavuş, Vedat - Kara, Murat. “Experimental Determination of Sound Transmission Loss of Some Wood Species”. Kastamonu University Journal of Forestry Faculty 20/2 (Eylül 2020), 190-199. https://doi.org/10.17475/kastorman.801786.
JAMA Çavuş V, Kara M. Experimental Determination of Sound Transmission Loss of Some Wood Species. Kastamonu University Journal of Forestry Faculty. 2020;20:190–199.
MLA Çavuş, Vedat ve Murat Kara. “Experimental Determination of Sound Transmission Loss of Some Wood Species”. Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, 2020, ss. 190-9, doi:10.17475/kastorman.801786.
Vancouver Çavuş V, Kara M. Experimental Determination of Sound Transmission Loss of Some Wood Species. Kastamonu University Journal of Forestry Faculty. 2020;20(2):190-9.

14178  14179       14165           14166           14167            14168