Araştırma Makalesi
BibTex RIS Kaynak Göster

İklim Değişikliğinin Boylu Ardıç Türünün Potansiyel Dağılımı Üzerindeki Etkisinin Kestirimi

Yıl 2020, , 133 - 142, 29.09.2020
https://doi.org/10.17475/kastorman.801847

Öz

Çalışmanın amacı: Bu çalışmanın amacı Boylu ardıç (Juniperus excelsa M. BIEB.) türünün günümüz ve gelecek için potansiyel dağılımlarının iklim değişimine göre modellenmesidir.
Çalışma alanı: Çalışma Batı Akdeniz Bölgesi’nde bulunan Burdur, Isparta ve Antalya illerini kapsayan Göller Bölgesi içerisinde gerçekleştirilmiştir.
Materyal ve yöntem: çalışmada herhangi bir hastalık belirtisi olmayan, kozalak verimi ve boy gelişimi iyi olan, saf ve doğal 40 farklı boylu ardıç meşçeresi kayıt altına alınmıştır. Geleceğe yönelik kestirimler 2070 yılına ait olarak, Temsili Konsantrasyon Rotaları senaryoları için HadGEM2-ES projeksiyonundan temin edilen 19 biyoklima verisine göre gerçekleştirilmiştir. Modelleme işlemi için Maksimum Entropi (MaxEnt) yöntemi kullanılmıştır.
Temel sonuçlar: Modele ait AUC değeri 0.966 ± 0.028 olarak tespit edilmiştir. En Kurak Ayın Yağış Miktarı, Mevsimsel Sıcaklık, En Soğuk Üç Ayın Yağış Miktarı, En Sıcak Ayın Maksimum Sıcaklığı, Gündüz Sınıf Ortalaması değişkenleri modele katkı yapan değişkenlerdir. Modele göre Boylu ardıç türünün dağılımında ciddi bir azalma görülmektedir. Sonuç olarak, çalışmadan elde edilen bulgular iklim değişikliği senaryolarına göre gerçekleştirilecek biyolojik çeşitlilik ve ekosistem planlama çalışmaları için etkili bir altlık oluşturabilecektir.
Araştırma vurguları: İklim değişikliğinin gelecekte bitki türlerinin dağılımını nasıl etkileyeceğini anlamak ekolojik araştırmalar açısından önem arz etmektedir. İklim değişikliği senaryoları bu belirsizliği ortadan kaldırmak için en çok tercih edilen parametrelerdir. Boylu ardıç türünün de iklim değişikliğinden etkileneceği ve dağılımının önemli ölçüde azalacağı öngörülmektedir.

Kaynakça

  • Adams, R.P., Tashev, A.N., Baser, K.H.K. & Christou, A.K. (2013). Geographic variation in volatile leaf oils of Juniperus excelsa M. Bieb. Phytologia. 95(4), 279-285.
  • Adams, R.P., Douaihy, B., Dagher-Kharrat, M.D., Farzaliyev, V., Tashev, A.N., Baser, K.H.S. & Christou, A.K. (2014). Geographic variation in the volatile leaf oils of Juniperus excelsa and J. polycarpos. Phytologia. 96, 96-106.
  • Atauchi, P.J., Aucca-Chutas, C., Ferro, G. & Prieto-Torres, D.A. (2020). Present and future potential distribution of the endangered Anairetes alpinus (Passeriformes: Tyrannidae) under global climate change scenarios. Journal of Ornithology, 1-16.
  • Carle, J. (2015). Climate change seen as top global threat. Pew Research Centre, 14.
  • Coode, M.J.E. & Cullen J. (1966). Juniperus L. in Flora of Turkey and the East Aegean Islands, 1, Davis PH, (Ed.) Edinburgh University Press, Edinburgh, 78-84.
  • Douaihy, B., Restoux, G., Machon, N. & Dagher-Kharrat, M.B. (2013). Ecological characterization of the Juniperus excelsa stands in Lebanon. Ecologia Mediterranea, 39(1), 169-180.
  • Eliçin, G. (1977). Türkiye Doğal Ardıç (Juniperus L.) Taksonlarının Yayılışları ile Önemli Morfolojik ve Anatomik Özellikleri Üzerinde Araştırmalar, İstanbul University Publishing No: 2327, Faculty of Forestry Publishing No: 232, 109, İstanbul.
  • ESRI. (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
  • Evans, J.S., Murphy, M.A., Holden, Z.A. & Cushman, S.A. (2011). Modeling species distribution and change using random forest. In Predictive species and habitat modeling in landscape ecology, Springer, 139-159, New York.
  • Fakir, H. (2014). Türkiye'nin Doğal ve Egzotik Ağaç ve Çalıları 1. In: Ünal Akkemik (Ed.) Gymnospermler, Angiospermler, Juniperus L. (Ardıçlar). Publications of Republic of Turkey General Directorate of Forestry, Ankara.
  • Fontaine, M., Aerts, R., Özkan, K., Mert, A., Gülsoy, S., Süel, H., Waelkens, M. & Muys, B. (2007). Elevation and exposition rather than soil types determine communities and site suitability in Mediterranean mountain forests of southern Anatolia, Turkey. Forest Ecology and Management, 1(3), 247,18-25.
  • Grossmann, E., Ohmann, J., Kagan, J., May, H. & Gregory, M. (2010). Mapping ecological systems with a random foret model: tradeoffs between errors and bias. Gap Analysis Bulletin, 17, 16-22.
  • Gulsoy, S. & Ozkan, K. (2013). Determination of environmental factors and indicator plant species for site suitability assessment of Crimean Juniper in the Acipayam District, Turkey. Sains Malaysiana, 42(10), 1439-1447.
  • Gülsoy, S., Akdemir, D., Özdemir, S., Aydın, S. & Dalgıç, L. (2014a). Effects of Environmental Factors on Physical Properties of Crimean juniper Cones in The Lakes District. II. National Mediterranean Forestry and Environment Symposium, Proceeding Book of Symposium, 750-762.
  • Gülsoy, S., Süel, H., Çelik, H., Özdemir, S. & Özkan, K. (2014b). Modeling site productivity of Anatolian black pine stands in response to site factors in Buldan Dıstrict, Turkey. Pakistan Journal of Botany, 46(1), 213-220.
  • Gülsoy, S. & Çıvğa, A. (2016). Relationships between essential oil properties of prickly juniper (Juniperus oxycedrus L. subsp. oxycedrus) berries and environmental factors. Turkish Journal of Forestry, 17(2), 142-152.
  • Gülsoy, S., Özkan, G., Şenol, H. & Mert, A. (2019). Assessment of essential oil properties in Juniperus excelsa subsp. excelsa cones depending on site factors. Fresenius Environmental Bulletin, 28(4), 2380-2389.
  • Hijmans, R.J. & Elith, J. (2017). Species distribution modeling with R. R package version 0.8-11.
  • Hsiung, W. & Sunstein, C R. (2006). Climate change and animals. University of Pennsylvania Law Review, 155, 1695.
  • Johns, T.C., Gregory, J.M., Ingram, W.J., Johnson, C.E., Jones, A., Lowe, J.A., Mitchell, J.F.B., Roberts, D.L., Sexton, D.M.H., Stevenson, D.S., Tett, S.F.B. & Woodage, M.J. (2003). Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate dynamics, 20(6), 583-612.
  • Karavani, A., Boer, M. M., Baudena, M., Colinas, C., Díaz‐Sierra, R., Pemán, J., de Luis, M., de Salamanca, A. E. & Resco de Dios, V. (2018). Fire‐induced deforestation in drought‐prone Mediterranean forests: drivers and unknowns from leaves to communities. Ecological Monographs, 88(2), 141-169.
  • Kaya, Z. & Raynal, D. J. (2001). Biodiversity and conservation of Turkish forests. Biological Conservation, 97(2), 131-141.
  • Kelly, A.E. & Goulden, M.L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33), 11823-11826.
  • Kıraç, A. & Mert, A. (2019). Will Danford’s lizard become extinct in the future?. Polish Journal of Environmental Studies, 28(3), 1741-1748.
  • Koç, D.E., Svenning, J.C. & Avcı, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69-82.
  • Kurpis, J., Serrato-Cruz, M.A. & Arroyo, T.P.F. (2019). Modeling the effects of climate change on the distribution of Tagetes lucida Cav.(Asteraceae). Global Ecology and Conservation, 20, e00747.
  • Leathwick, J.R., Elith, J. & Hastie, T. (2006). Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological modelling, 199(2), 188-196.
  • Mert, A., Özkan, K., Şentürk, Ö. & Negiz, M.G. (2016). Changing the potential distribution of Turkey Oak (Quercus cerris L.) under climate change in Turkey. Polish Journal of Environmental Studies, 25(4), 1633-1638.
  • Mert, A. & Kıraç, A. (2017). Habitat Suitability Mapping of Anatololacerta danfordi (Günter, 1876) in Isparta-Sütçüler District. Bilge International Journal of Science and Technology Research, 1(1), 16-22.
  • Mohammadi, S., Ebrahimi, E., Moghadam, M.S. & Bosso, L. (2019). Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecological Informatics, 52, 7-13.
  • Oruç, M.S., Mert, A. & Özdemir, İ. (2017). Modelling Habitat Suitability for Red Deer (Cervus elaphus L.) Using Environmental Variables in Çatacık Region. Bilge International Journal of Science and Technology Research, 1(2), 135-142.
  • Özdemir, S. (2018). Potential Distribution Modelling and mapping using Random Forest method: An example of Yukarıgökdere District. Turkish Journal of Forestry, 19(1), 51-56.
  • Özkan, K., (2010). A Succession for Determination of Ecologic Area Diversity Index For Forest Ecosystem Diversity Mapping. Turkish Journal of Forestry, 2,136-148.
  • Özkan, K., Gülsoy, K., Aerts, R. & Muys, B. (2010a). Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south western Anatolia, Turkey. Journal of Environmental Biology, 31, 97-100.
  • Özkan, K., Gulsoy, S., Mert, A., Özturk, M. & Muys, B. (2010b). Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. Journal of Environmental Biology, 31, 51-60.
  • Özkan, K., Şentürk, Ö., Mert, A. & Negiz, M.G. (2015). Modeling and mapping potential distribution of Crimean juniper (Bieb.) using correlative approaches. Journal of Environmental Biology, Special issue, 36, 9-15.
  • Poushter, J. & Huang, C. (2019). Climate change still seen as the top global threat, but cyberattacks a rising concern. Pew Research Center, February, 10. Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., Xu, G. & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146.
  • RStudio Team. (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Ward, G., Hastie, T., Barry, S., Elith, J. & Leathwick, J.R. (2009). Presence‐only data and the EM algorithm. Biometrics, 65(2), 554-563.
  • Zheljazkov, V.D., Kacaniova, M., Dincheva, I., Radoukova, T., Semerdjieva, I.B., Astatkie, T. & Schlegel, V. (2018). Essential oil composition, antioxidant and antimicrobial activity of the galbuli of six juniper species. Industrial Crops and Products, 124, 449-458.

Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper

Yıl 2020, , 133 - 142, 29.09.2020
https://doi.org/10.17475/kastorman.801847

Öz

Aim of study: The main purpose of the present study is to model present and future potential distribution areas of the Crimean juniper (Juniperus excelsa M. BIEB.) under climate change.
Area of study: The study was carried out in the Lakes District that covers Burdur, Isparta and Antalya provinces in the west of the Mediterranean region.
Material and methods: During the study, the inventory data of 40 productive juniper stands in the region were collected. The future projections for the study area were made for the year 2070 with all Representative Concentration Pathways (RCPs) scenarios and 19 bioclimatic predictors from HadGEM2-ES. Modeling process was performed by using the Maximum Entropy (MaxEnt) method.
Main results: The AUC value of the model was determined as 0.966 ± 0.028. The model identified that Precipitation of Driest Month, Temperature Seasonality, Precipitation of Coldest Quarter, Max Temperature of Warmest Month, Mean Diurnal Range were the major variables influencing the current and future distributions of the species. According to the models, there will be a dramatic decrease in the potential distribution of the Crimean juniper. Consequently, the results from all these studies will be able to create an effective base for the biodiversity and ecosystem planning studies to be realized according to the climate change scenarios.
Highlights: Understanding how climate change will affect the distribution of plant species in the future is an important topic in ecological researches. Climate change scenarios are the most preferred parameters to remove this uncertainty. It is predicted that the Crimean juniper will be affected by climate change and its distribution will decrease dramatically.

Kaynakça

  • Adams, R.P., Tashev, A.N., Baser, K.H.K. & Christou, A.K. (2013). Geographic variation in volatile leaf oils of Juniperus excelsa M. Bieb. Phytologia. 95(4), 279-285.
  • Adams, R.P., Douaihy, B., Dagher-Kharrat, M.D., Farzaliyev, V., Tashev, A.N., Baser, K.H.S. & Christou, A.K. (2014). Geographic variation in the volatile leaf oils of Juniperus excelsa and J. polycarpos. Phytologia. 96, 96-106.
  • Atauchi, P.J., Aucca-Chutas, C., Ferro, G. & Prieto-Torres, D.A. (2020). Present and future potential distribution of the endangered Anairetes alpinus (Passeriformes: Tyrannidae) under global climate change scenarios. Journal of Ornithology, 1-16.
  • Carle, J. (2015). Climate change seen as top global threat. Pew Research Centre, 14.
  • Coode, M.J.E. & Cullen J. (1966). Juniperus L. in Flora of Turkey and the East Aegean Islands, 1, Davis PH, (Ed.) Edinburgh University Press, Edinburgh, 78-84.
  • Douaihy, B., Restoux, G., Machon, N. & Dagher-Kharrat, M.B. (2013). Ecological characterization of the Juniperus excelsa stands in Lebanon. Ecologia Mediterranea, 39(1), 169-180.
  • Eliçin, G. (1977). Türkiye Doğal Ardıç (Juniperus L.) Taksonlarının Yayılışları ile Önemli Morfolojik ve Anatomik Özellikleri Üzerinde Araştırmalar, İstanbul University Publishing No: 2327, Faculty of Forestry Publishing No: 232, 109, İstanbul.
  • ESRI. (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
  • Evans, J.S., Murphy, M.A., Holden, Z.A. & Cushman, S.A. (2011). Modeling species distribution and change using random forest. In Predictive species and habitat modeling in landscape ecology, Springer, 139-159, New York.
  • Fakir, H. (2014). Türkiye'nin Doğal ve Egzotik Ağaç ve Çalıları 1. In: Ünal Akkemik (Ed.) Gymnospermler, Angiospermler, Juniperus L. (Ardıçlar). Publications of Republic of Turkey General Directorate of Forestry, Ankara.
  • Fontaine, M., Aerts, R., Özkan, K., Mert, A., Gülsoy, S., Süel, H., Waelkens, M. & Muys, B. (2007). Elevation and exposition rather than soil types determine communities and site suitability in Mediterranean mountain forests of southern Anatolia, Turkey. Forest Ecology and Management, 1(3), 247,18-25.
  • Grossmann, E., Ohmann, J., Kagan, J., May, H. & Gregory, M. (2010). Mapping ecological systems with a random foret model: tradeoffs between errors and bias. Gap Analysis Bulletin, 17, 16-22.
  • Gulsoy, S. & Ozkan, K. (2013). Determination of environmental factors and indicator plant species for site suitability assessment of Crimean Juniper in the Acipayam District, Turkey. Sains Malaysiana, 42(10), 1439-1447.
  • Gülsoy, S., Akdemir, D., Özdemir, S., Aydın, S. & Dalgıç, L. (2014a). Effects of Environmental Factors on Physical Properties of Crimean juniper Cones in The Lakes District. II. National Mediterranean Forestry and Environment Symposium, Proceeding Book of Symposium, 750-762.
  • Gülsoy, S., Süel, H., Çelik, H., Özdemir, S. & Özkan, K. (2014b). Modeling site productivity of Anatolian black pine stands in response to site factors in Buldan Dıstrict, Turkey. Pakistan Journal of Botany, 46(1), 213-220.
  • Gülsoy, S. & Çıvğa, A. (2016). Relationships between essential oil properties of prickly juniper (Juniperus oxycedrus L. subsp. oxycedrus) berries and environmental factors. Turkish Journal of Forestry, 17(2), 142-152.
  • Gülsoy, S., Özkan, G., Şenol, H. & Mert, A. (2019). Assessment of essential oil properties in Juniperus excelsa subsp. excelsa cones depending on site factors. Fresenius Environmental Bulletin, 28(4), 2380-2389.
  • Hijmans, R.J. & Elith, J. (2017). Species distribution modeling with R. R package version 0.8-11.
  • Hsiung, W. & Sunstein, C R. (2006). Climate change and animals. University of Pennsylvania Law Review, 155, 1695.
  • Johns, T.C., Gregory, J.M., Ingram, W.J., Johnson, C.E., Jones, A., Lowe, J.A., Mitchell, J.F.B., Roberts, D.L., Sexton, D.M.H., Stevenson, D.S., Tett, S.F.B. & Woodage, M.J. (2003). Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate dynamics, 20(6), 583-612.
  • Karavani, A., Boer, M. M., Baudena, M., Colinas, C., Díaz‐Sierra, R., Pemán, J., de Luis, M., de Salamanca, A. E. & Resco de Dios, V. (2018). Fire‐induced deforestation in drought‐prone Mediterranean forests: drivers and unknowns from leaves to communities. Ecological Monographs, 88(2), 141-169.
  • Kaya, Z. & Raynal, D. J. (2001). Biodiversity and conservation of Turkish forests. Biological Conservation, 97(2), 131-141.
  • Kelly, A.E. & Goulden, M.L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105(33), 11823-11826.
  • Kıraç, A. & Mert, A. (2019). Will Danford’s lizard become extinct in the future?. Polish Journal of Environmental Studies, 28(3), 1741-1748.
  • Koç, D.E., Svenning, J.C. & Avcı, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69-82.
  • Kurpis, J., Serrato-Cruz, M.A. & Arroyo, T.P.F. (2019). Modeling the effects of climate change on the distribution of Tagetes lucida Cav.(Asteraceae). Global Ecology and Conservation, 20, e00747.
  • Leathwick, J.R., Elith, J. & Hastie, T. (2006). Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological modelling, 199(2), 188-196.
  • Mert, A., Özkan, K., Şentürk, Ö. & Negiz, M.G. (2016). Changing the potential distribution of Turkey Oak (Quercus cerris L.) under climate change in Turkey. Polish Journal of Environmental Studies, 25(4), 1633-1638.
  • Mert, A. & Kıraç, A. (2017). Habitat Suitability Mapping of Anatololacerta danfordi (Günter, 1876) in Isparta-Sütçüler District. Bilge International Journal of Science and Technology Research, 1(1), 16-22.
  • Mohammadi, S., Ebrahimi, E., Moghadam, M.S. & Bosso, L. (2019). Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecological Informatics, 52, 7-13.
  • Oruç, M.S., Mert, A. & Özdemir, İ. (2017). Modelling Habitat Suitability for Red Deer (Cervus elaphus L.) Using Environmental Variables in Çatacık Region. Bilge International Journal of Science and Technology Research, 1(2), 135-142.
  • Özdemir, S. (2018). Potential Distribution Modelling and mapping using Random Forest method: An example of Yukarıgökdere District. Turkish Journal of Forestry, 19(1), 51-56.
  • Özkan, K., (2010). A Succession for Determination of Ecologic Area Diversity Index For Forest Ecosystem Diversity Mapping. Turkish Journal of Forestry, 2,136-148.
  • Özkan, K., Gülsoy, K., Aerts, R. & Muys, B. (2010a). Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south western Anatolia, Turkey. Journal of Environmental Biology, 31, 97-100.
  • Özkan, K., Gulsoy, S., Mert, A., Özturk, M. & Muys, B. (2010b). Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. Journal of Environmental Biology, 31, 51-60.
  • Özkan, K., Şentürk, Ö., Mert, A. & Negiz, M.G. (2015). Modeling and mapping potential distribution of Crimean juniper (Bieb.) using correlative approaches. Journal of Environmental Biology, Special issue, 36, 9-15.
  • Poushter, J. & Huang, C. (2019). Climate change still seen as the top global threat, but cyberattacks a rising concern. Pew Research Center, February, 10. Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., Xu, G. & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139-146.
  • RStudio Team. (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
  • Ward, G., Hastie, T., Barry, S., Elith, J. & Leathwick, J.R. (2009). Presence‐only data and the EM algorithm. Biometrics, 65(2), 554-563.
  • Zheljazkov, V.D., Kacaniova, M., Dincheva, I., Radoukova, T., Semerdjieva, I.B., Astatkie, T. & Schlegel, V. (2018). Essential oil composition, antioxidant and antimicrobial activity of the galbuli of six juniper species. Industrial Crops and Products, 124, 449-458.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Serkan Özdemir Bu kişi benim

Serkan Gülsoy Bu kişi benim

Ahmet Mert Bu kişi benim

Yayımlanma Tarihi 29 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Özdemir, S., Gülsoy, S., & Mert, A. (2020). Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133-142. https://doi.org/10.17475/kastorman.801847
AMA Özdemir S, Gülsoy S, Mert A. Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty. Eylül 2020;20(2):133-142. doi:10.17475/kastorman.801847
Chicago Özdemir, Serkan, Serkan Gülsoy, ve Ahmet Mert. “Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper”. Kastamonu University Journal of Forestry Faculty 20, sy. 2 (Eylül 2020): 133-42. https://doi.org/10.17475/kastorman.801847.
EndNote Özdemir S, Gülsoy S, Mert A (01 Eylül 2020) Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty 20 2 133–142.
IEEE S. Özdemir, S. Gülsoy, ve A. Mert, “Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper”, Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, ss. 133–142, 2020, doi: 10.17475/kastorman.801847.
ISNAD Özdemir, Serkan vd. “Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper”. Kastamonu University Journal of Forestry Faculty 20/2 (Eylül 2020), 133-142. https://doi.org/10.17475/kastorman.801847.
JAMA Özdemir S, Gülsoy S, Mert A. Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty. 2020;20:133–142.
MLA Özdemir, Serkan vd. “Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper”. Kastamonu University Journal of Forestry Faculty, c. 20, sy. 2, 2020, ss. 133-42, doi:10.17475/kastorman.801847.
Vancouver Özdemir S, Gülsoy S, Mert A. Predicting the Effect of Climate Change on the Potential Distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty. 2020;20(2):133-42.

14178  14179       14165           14166           14167            14168