Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

GMRT Rüzgar Türbünün Diğer Güç Rüzgar Türbünleriyle ile Efektif Olarak Karşılaştırılması

Yıl 2017, Cilt 17, Sayı 1, 69 - 79, 05.03.2017
https://doi.org/10.17475/kastorman.296495

Öz

Bu çalışmada Gelibolu Model Rüzgâr Türbini (GMRT) ve üç adet PTDW (güç-işleme yönlendirme kanadı) oluşan gelişmiş özel bir türbin tasarım araştırlmıştır. Bu model, dikey türbin türbinlerinin (DARRIEUS) tip güç kanatlarının özel bir parçasıdır. PTDW kanatları negatif rüzgâr enerjilerini pozitif ek bir vakum gücüne dönüştürür ve katkı, türbinlerin güç kanatlarının verimliliğini, diğer geleneksel dikey şaft rüzgâr türbinleriyle orantılı olarak 5 kat artırır. Güç dengesinin diğer modellerden çok daha etkili olduğunu gösteriyor. Çalışmamız gösteriyorki, bu model çevre için daha uygundur. Türbinin aerodinamik etki bölgesi tarama alanına kıyasla geniş olduğundan, türbinin toplam maliyeti, diğer rüzgâr türbinlerine göre kilovat başına maliyet ve tam kapasite maliyeti açısından daha az maliyetlidir. Tasarladığı üstünlük sayesinde oluşur. Bu çalışmada, türbin gücü ve üstün tasarım bakımından simülasyon hesaplamaları Monte Carlo bilgisayar yöntemi kullanılmıştır.

Kaynakça

  • Ackermann T., 2005. Windpower in power systems print ISBN: 9780470855089.
  • Akdağ SA and Güler Ö., 2010. Evalution of wind energy investment interest and electricity generation cost analysis for turkey, applied energy 87, 2574-2580
  • Aras H., 2003. Wind energy status and its assessment in Turkey. Renewable Energy, 28, 2213-2220.
  • Byon E, Ntaimo L and Ding Y., 2010. Optimal maintenance strategiesfor wind turbine systemsunder stochastic weather conditions, IEEE transactıons on reliability, 59 (2),393-404.
  • Ertek, G, Asian S., Haksoz,C., Pakter, S., Ulun.,S., 2016. Wind Turbine Accidents: A Data Mining Study., IEEE Systems Journal, vol: PP, issue: 99, Pages: 1 - 12, DOI: 10.1109/JSYST.2016.2565818.
  • EuropeanWindEnergyAssociation Report, 2013a .deepwater, thenext step for offshore windenergy.
  • EuropeanWindEnergyAssociation Report., 2013b. The European offshore wind ındustry keytrend sand statistics.
  • Güler Ö. 2009. Wind energy status in electrical energy production of Turkey: Renewable and sustainable energy reviews 13,473-478.
  • Güleren KM and Demir S., 2011. Performance analysis of different airfoils for turbine blades at low angles of attack. J.of thermal science and technology, 31,51-59.
  • Haessig P, Multon B., 2015. Energy Storage ControlwithAgingLimitation.PowerTechconference.
  • Hançerlioğulları, A., 2006. Monte Carlo Simulation and mcnp Code System. Kastamonu Universitiy education of journal 2,545-556.
  • Hansen NY, Sorensen JN,Voutsinas S, Sorensen N, Madsen HA., 2006. State of theartinwindturbineaerodynamicsandaeroelasticity. Prog.Aerosp.Sci. 42, 285–330.
  • Hau E. 2005. Wind turbines, fundamentals, technologies, application, economics, ısbnno: 3-540-57064-0.
  • Holttinen H, Orths AG. Currents of change. Ieee power&energy magazine 2011; 9(6),47–59.
  • Kooijman HJT, Lindenburg C, Winkelaar D, van der Hooft EL., 2003. Dowec 6 Mwpre-design. aero-elastic modelling of thedowec 6,mwpre-design in phatas, dowec-f1w2-hjk-01-046/9publicversion.
  • Le Gourieres, D., 1982. Wind power plants, theory and design. Pergamon press.
  • Luo N, Pacheco L, Vidal Y, Li H., 2012. Smart structural control strategies for offshore wind power generation with floating wind turbines. Proceedings of the international conference on renewable energy sand power quality, santiago de compostel -Spain.
  • Marmidis G, Lazerou S, Pyrigioti E., 2008.
  • Menter FR., 1994. Two-equationeddy-viscosityturbulencemodelsforengineringapplications. AIAAJ; 32(8), 1598–1605.
  • Optimal placement of windturbines in a wind park using Monte Carlo simulation, renewable energy. 33, 1455-1460.
  • Penedo RJM, 2008. Aero-elastic bladeoptimizationfor an urban windturbine.
  • Ragheb M, Ragheb A., 2011. Wind turbines theory-the Betz equation and optimal rotor tip speed ratio.
  • Randolph J and Master G, 2008. Energyforsustainability: technology, planning, ısbn-13: 978-1597261036.
  • Rethore PE, Fuglsang P, Larsen GC, Buhl T. Laesen TJ, Aagaard MHT., 2014. Multi-fidelityoptimization of windfarms, WindEnergy. 17(12), 1797-1816.
  • Sarun B., 2006. Computationa lstudies of horizontalaxiswindturbines in high wind speed condition using advanced turbulence models. Georgia Institute of Technology, United States.
  • SebastianT, Lackner MA., 2012. Development of a free vortex wake method code for off shore floating wind turbines: renew energy, 46,269–275.
  • Şener YA., 1995. Comparison of efficiency parameters in “gelibolu model” wind turbine.Tubitak technical report.
  • Song DL, Yang ZX.,2015,.Design, simulation and optimization of a novel permanent magnetic driver for vertical axis wind turbine,ieee 12th international conference on networking, sensing and control howard civil service ınternational house, taipei, Taiwan.
  • Butterfield S, Musial W, Jonkman J, SclavounosP, 2005. Engineering ch
  • Tande JO., 2005. Power quality standards for wind turbines, wind power in power systems.
  • Toan T.T, Kim D.H,2015. The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis, Journal of Wind Engineering and Industrial Aerodynamics.,142(2015)65–81.
  • Uslu N, Peker İ, Ünal S, Nasırlı C. ,2012. Alternative sources of wood consumption in ilgaz mountain forest villages and their effects on the protection of forests, mountains of turkey, First National Symposium, Kastamonu.
  • Windtürbine, RST Technology,2015. Http://www.renewablesystemstechnology.com/diy-tutorials.

Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind

Yıl 2017, Cilt 17, Sayı 1, 69 - 79, 05.03.2017
https://doi.org/10.17475/kastorman.296495

Öz

In this study, we investigated a special design, advanced wind turbine, which is comprised of Gelibolu Model Wind Turbine (GMRT) and three PTDW (power-treatment-directing-wing) type wings integrated. This model is vertical spindle turbines (DARRIEUS) type power wings. PTDW wings transform the negative wind powers into a positive additional vacuum power and this contribution multiplies the productivity of turbine’s power wings by as much as  5 times in proportion to other traditional vertical shaft wind turbines. It show that power balance  is effective  much more than other models .This model is more suitable for the environment that it is the conclusion gained  from the data. Since the turbine’s aerodynamic effect zone is wide compared to the scanning area, the total cost of the turbine is less compared to the other wind turbines in terms of per kilowatt cost and full capacity cost. It comprises thanks to the superiority provided by its design. In this study, we used Monte Carlo computer simulation method for the calculations of turbine power and about effective.

Kaynakça

  • Ackermann T., 2005. Windpower in power systems print ISBN: 9780470855089.
  • Akdağ SA and Güler Ö., 2010. Evalution of wind energy investment interest and electricity generation cost analysis for turkey, applied energy 87, 2574-2580
  • Aras H., 2003. Wind energy status and its assessment in Turkey. Renewable Energy, 28, 2213-2220.
  • Byon E, Ntaimo L and Ding Y., 2010. Optimal maintenance strategiesfor wind turbine systemsunder stochastic weather conditions, IEEE transactıons on reliability, 59 (2),393-404.
  • Ertek, G, Asian S., Haksoz,C., Pakter, S., Ulun.,S., 2016. Wind Turbine Accidents: A Data Mining Study., IEEE Systems Journal, vol: PP, issue: 99, Pages: 1 - 12, DOI: 10.1109/JSYST.2016.2565818.
  • EuropeanWindEnergyAssociation Report, 2013a .deepwater, thenext step for offshore windenergy.
  • EuropeanWindEnergyAssociation Report., 2013b. The European offshore wind ındustry keytrend sand statistics.
  • Güler Ö. 2009. Wind energy status in electrical energy production of Turkey: Renewable and sustainable energy reviews 13,473-478.
  • Güleren KM and Demir S., 2011. Performance analysis of different airfoils for turbine blades at low angles of attack. J.of thermal science and technology, 31,51-59.
  • Haessig P, Multon B., 2015. Energy Storage ControlwithAgingLimitation.PowerTechconference.
  • Hançerlioğulları, A., 2006. Monte Carlo Simulation and mcnp Code System. Kastamonu Universitiy education of journal 2,545-556.
  • Hansen NY, Sorensen JN,Voutsinas S, Sorensen N, Madsen HA., 2006. State of theartinwindturbineaerodynamicsandaeroelasticity. Prog.Aerosp.Sci. 42, 285–330.
  • Hau E. 2005. Wind turbines, fundamentals, technologies, application, economics, ısbnno: 3-540-57064-0.
  • Holttinen H, Orths AG. Currents of change. Ieee power&energy magazine 2011; 9(6),47–59.
  • Kooijman HJT, Lindenburg C, Winkelaar D, van der Hooft EL., 2003. Dowec 6 Mwpre-design. aero-elastic modelling of thedowec 6,mwpre-design in phatas, dowec-f1w2-hjk-01-046/9publicversion.
  • Le Gourieres, D., 1982. Wind power plants, theory and design. Pergamon press.
  • Luo N, Pacheco L, Vidal Y, Li H., 2012. Smart structural control strategies for offshore wind power generation with floating wind turbines. Proceedings of the international conference on renewable energy sand power quality, santiago de compostel -Spain.
  • Marmidis G, Lazerou S, Pyrigioti E., 2008.
  • Menter FR., 1994. Two-equationeddy-viscosityturbulencemodelsforengineringapplications. AIAAJ; 32(8), 1598–1605.
  • Optimal placement of windturbines in a wind park using Monte Carlo simulation, renewable energy. 33, 1455-1460.
  • Penedo RJM, 2008. Aero-elastic bladeoptimizationfor an urban windturbine.
  • Ragheb M, Ragheb A., 2011. Wind turbines theory-the Betz equation and optimal rotor tip speed ratio.
  • Randolph J and Master G, 2008. Energyforsustainability: technology, planning, ısbn-13: 978-1597261036.
  • Rethore PE, Fuglsang P, Larsen GC, Buhl T. Laesen TJ, Aagaard MHT., 2014. Multi-fidelityoptimization of windfarms, WindEnergy. 17(12), 1797-1816.
  • Sarun B., 2006. Computationa lstudies of horizontalaxiswindturbines in high wind speed condition using advanced turbulence models. Georgia Institute of Technology, United States.
  • SebastianT, Lackner MA., 2012. Development of a free vortex wake method code for off shore floating wind turbines: renew energy, 46,269–275.
  • Şener YA., 1995. Comparison of efficiency parameters in “gelibolu model” wind turbine.Tubitak technical report.
  • Song DL, Yang ZX.,2015,.Design, simulation and optimization of a novel permanent magnetic driver for vertical axis wind turbine,ieee 12th international conference on networking, sensing and control howard civil service ınternational house, taipei, Taiwan.
  • Butterfield S, Musial W, Jonkman J, SclavounosP, 2005. Engineering ch
  • Tande JO., 2005. Power quality standards for wind turbines, wind power in power systems.
  • Toan T.T, Kim D.H,2015. The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis, Journal of Wind Engineering and Industrial Aerodynamics.,142(2015)65–81.
  • Uslu N, Peker İ, Ünal S, Nasırlı C. ,2012. Alternative sources of wood consumption in ilgaz mountain forest villages and their effects on the protection of forests, mountains of turkey, First National Symposium, Kastamonu.
  • Windtürbine, RST Technology,2015. Http://www.renewablesystemstechnology.com/diy-tutorials.

Kaynak Göster

Bibtex @araştırma makalesi { kastorman296495, journal = {Kastamonu University Journal of Forestry Faculty}, issn = {1303-2399}, eissn = {1309-4181}, address = {}, publisher = {Kastamonu Üniversitesi}, year = {2017}, volume = {17}, pages = {69 - 79}, doi = {10.17475/kastorman.296495}, title = {Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind}, key = {cite}, author = {Hançerlıoğulları, Aybaba and Şener, Yavuz Ali and Ünal, Sabri and Karadeniz, Mertcan and Hançerlıoğulları, Gülşah and Kurnaz, Aslı and Çetiner, Atıf and Ashufat, Salem and Madee, Yosef G.Ali and Karatay, Seçil} }
APA Hançerlıoğulları, A. , Şener, Y. A. , Ünal, S. , Karadeniz, M. , Hançerlıoğulları, G. , Kurnaz, A. , Çetiner, A. , Ashufat, S. , Madee, Y. G. & Karatay, S. (2017). Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind . Kastamonu University Journal of Forestry Faculty , 17 (1) , 69-79 . DOI: 10.17475/kastorman.296495
MLA Hançerlıoğulları, A. , Şener, Y. A. , Ünal, S. , Karadeniz, M. , Hançerlıoğulları, G. , Kurnaz, A. , Çetiner, A. , Ashufat, S. , Madee, Y. G. , Karatay, S. "Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind" . Kastamonu University Journal of Forestry Faculty 17 (2017 ): 69-79 <https://dergipark.org.tr/tr/pub/kastorman/issue/27888/296495>
Chicago Hançerlıoğulları, A. , Şener, Y. A. , Ünal, S. , Karadeniz, M. , Hançerlıoğulları, G. , Kurnaz, A. , Çetiner, A. , Ashufat, S. , Madee, Y. G. , Karatay, S. "Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind". Kastamonu University Journal of Forestry Faculty 17 (2017 ): 69-79
RIS TY - JOUR T1 - Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind AU - Aybaba Hançerlıoğulları , Yavuz Ali Şener , Sabri Ünal , Mertcan Karadeniz , Gülşah Hançerlıoğulları , Aslı Kurnaz , Atıf Çetiner , Salem Ashufat , Yosef G.Ali Madee , Seçil Karatay Y1 - 2017 PY - 2017 N1 - doi: 10.17475/kastorman.296495 DO - 10.17475/kastorman.296495 T2 - Kastamonu University Journal of Forestry Faculty JF - Journal JO - JOR SP - 69 EP - 79 VL - 17 IS - 1 SN - 1303-2399-1309-4181 M3 - doi: 10.17475/kastorman.296495 UR - https://doi.org/10.17475/kastorman.296495 Y2 - 2017 ER -
EndNote %0 Kastamonu Üniversitesi Orman Fakültesi Dergisi Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind %A Aybaba Hançerlıoğulları , Yavuz Ali Şener , Sabri Ünal , Mertcan Karadeniz , Gülşah Hançerlıoğulları , Aslı Kurnaz , Atıf Çetiner , Salem Ashufat , Yosef G.Ali Madee , Seçil Karatay %T Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind %D 2017 %J Kastamonu University Journal of Forestry Faculty %P 1303-2399-1309-4181 %V 17 %N 1 %R doi: 10.17475/kastorman.296495 %U 10.17475/kastorman.296495
ISNAD Hançerlıoğulları, Aybaba , Şener, Yavuz Ali , Ünal, Sabri , Karadeniz, Mertcan , Hançerlıoğulları, Gülşah , Kurnaz, Aslı , Çetiner, Atıf , Ashufat, Salem , Madee, Yosef G.Ali , Karatay, Seçil . "Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind". Kastamonu University Journal of Forestry Faculty 17 / 1 (Mart 2017): 69-79 . https://doi.org/10.17475/kastorman.296495
AMA Hançerlıoğulları A. , Şener Y. A. , Ünal S. , Karadeniz M. , Hançerlıoğulları G. , Kurnaz A. , Çetiner A. , Ashufat S. , Madee Y. G. , Karatay S. Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind. Kastamonu University Journal of Forestry Faculty. 2017; 17(1): 69-79.
Vancouver Hançerlıoğulları A. , Şener Y. A. , Ünal S. , Karadeniz M. , Hançerlıoğulları G. , Kurnaz A. , Çetiner A. , Ashufat S. , Madee Y. G. , Karatay S. Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind. Kastamonu University Journal of Forestry Faculty. 2017; 17(1): 69-79.
IEEE A. Hançerlıoğulları , Y. A. Şener , S. Ünal , M. Karadeniz , G. Hançerlıoğulları , A. Kurnaz , A. Çetiner , S. Ashufat , Y. G. Madee ve S. Karatay , "Comparison of Design Gmrt Wind Turbine Plant Effectively with other Power Wind", Kastamonu University Journal of Forestry Faculty, c. 17, sayı. 1, ss. 69-79, Mar. 2017, doi:10.17475/kastorman.296495

14178  14179       14165           14166           14167            14168